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1 Some points of terminology

• The identity element generally is denoted 0 for an abelian group, 1 for a nonabelian
group, and e for a general group. Similarly, we typically employ additive notation for
abelian groups and multiplicative notation for nonabelian (or general) groups.

• The trivial group usually is denoted by the same symbol as identity, which is the only
element it contains. It should not be confused with the empty set. So, if we write
G = 0 we mean the trivial group, and if we write g = 0 we mean the identity element
of an abelian group.

• On a similar note, when we speak of “disjoint” subgroups H and K we mean that
H ∩K is the trivial group, not the null set (otherwise, their intersection would not be
a group).

• There only is one homomorphism from a trivial group to any other group, and it is
injective: f(e) = e′. There only is one homomorphism from any group to a trivial
group, and it is surjective: f(g) = e′. Put another way, the trivial group is both the
initial and terminal object in the category GRP.
Although here we distinguish the identities of the groups, usually we’ll just say e for all groups involved and it will be
clear from the context which it belongs to.

• Unless otherwise specified, when we write H ⊂ G for group G, H will be a subgroup,
not just a subset.
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• The notation HG commonly is used in two ways.

– When H and G are subgroups of the same group (or H ⊂ G), HG is the set of
all products of elements from H and G (i.e. {(h · g);h ∈ H, g ∈ G}). Likewise,
gH is the set {(g · h);h ∈ H} for the given g (and similarly for Hg).

– WhenH andG are unrelated groups,HG will denote the set of all pairs {(h, g);h ∈
H, g ∈ G} without any implied group structure. I.e. the forgetful functor applied
to H ×G.

• Recall that Aut(G) is the group of isomorphisms G → G.
Automorphisms should not be confused with endomorphisms. Endomorphisms are homomorphisms G → G, whereas
automorphisms are isomorphisms G → G. Every automorphism is an endomorphism, but not every endomorphism is an
automorphism (it would have to be bijective as well).

• The term “direct product” and “direct sum” tend to be used interchangeably (along
with the notation ⊕ and × sometimes). We’ll reserve × for the setwise direct-product
and use ⊕ for the group direct sum. Direct products and direct sums of groups are
the same for finite index-sets. I.e. unless we are taking a direct sum over an infinite
number of groups, it is the same as the direct product.
What about the case of an infinite number of groups? Let J be the relevant index set and let’s denote the groups Gj
(for j ∈ J). An element of the direct product ×j∈JGj consists of a choice of element gj from each of the Gj ’s. An

element of the direct sum ⊕j∈JGj consists of the same but with the constraint that all but a finite number of those

gj ’s are the identity elements of their respective Gj ’s. I.e., only a finite number of the entries are non-trivial.

• Group isomorphism is denoted ≈.
• For convenience, we’ll use the notation Iso(G,H) to denote the set of isomorphisms
G → H. This obviously is not a group unless G = H, in which case it is just Aut(G).

2 A Review of Some Group Theory

For our discussion we’ll need a clear understanding of normal subgroups and quotient groups
as well as a few other concepts from group theory, so let’s review these.

2.1 Basic Definitions

First, a brief refresher on Normal subgroups and Quotient groups. Suppose we are given
group G and subgroup H ⊆ G.

• Left cosets are written gH and right cosets are writtenHg. Each is a set of elements
in G. Not all left cosets are

distinct, but any two are
either equal or disjoint.
Ditto for right cosets.• The left (right) cosets form a partition of G, but they do not in general form a group.

We can try to imbue them with a suitable product, but there are obstructions to the group axioms. For example g−1H

is not a useful inverse since (gh)−1 = h−1g−1, so neither left cosets nor right cosets multiply as desired. More gener-

ally (gg′)H does not consist of a product of an element of gH and an element of g′H.

• In general, the partitions formed from the left and right cosets are different. I.e., the
set of left cosets need not equal the set of right cosets.
This is not a vacuous statement. Even if gH ̸= Hg for individual g’s, it is conceivable that gH = Hg′ for some g′
associated with each g. However, this is not the case in general.

• The Quotient Set G/H is the set of left cosets. As mentioned, it is not a group in
general.
There is an equivalent definition for right cosets, written H \ G, but it doesn’t appear often. Every result involving one
has an analogue involving the other, so the preference is a matter of convention. In most cases that we care about the
two will be the same, so it is a moot point anyway.
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– The elements of the quotient set are written [g] (where g is any element of the
relevant coset). For the present section we’ll also write them explicitly as cosets
gH. Depending on the context, we either mean an element of G/H or a subset
of G.

• The obstruction to G/H being a group is that gH ̸= Hg in general. I.e., the condition
for G/H to be a group is that gH = Hg for all g. Equivalently, gHg−1 = H for all
g. If this holds, the cosets form a group. It also is the very condition under which the
left and right partitions are the same and G/H = H \G.
In fact, the condition is equivalent to requiring only that the *sets* of left and right cosets be the same (i.e. the left and
right partitions be the same). This implies gH = Hg for all g because g ∈ gH and g ∈ Hg so g must appear in the same
class in both partitions and the two are the same.

• H is a Normal Subgroup if it obeys the conditions which make the cosets into a
group.

– We can refer to “cosets” instead of “left” or “right” cosets because the two are
the same in this case.

– A normal subgroup preserves cosets. I.e., h(gH) = (gH) for all h ∈ H.
Pf: gH = Hg, so pick h′g ∈ Hg. Then hh′g = (hh′)g. Since hh′ ∈ H, (hh′)g ∈ Hg. But Hg = gH, so

h(gH) ⊆ gH. Suppose we pick an element of gH. Since gH = Hg, it can be written h′g for some h′ ∈ H. Let

x ≡ h−1h′g ∈ Hg (and thus x ∈ gH). I.e., hx = h′g. So any element of z ∈ gH has some element x ∈ gH s.t.
hx = z. I.e. h(gH) ⊇ gH too, so we have h(gH) = gH.

– Equivalently, N is normal in G iff gNg−1 = N for all g ∈ G.

• Usually a normal subgroup is denoted N , and we write N ◁ G (or N ⊴ G).

• For a normal subgroup N , the Quotient Set Q = G/N has (by definition) the natural
structure of a group. It is called the Quotient Group.
What is the multiplication on Q? Denote by [g] the coset gH. (i) The identity of G/N is [e] = H. (ii) If k ∈ gH, then

k = gh for some h ∈ H, so k−1 = h−1g−1. But h−1 ∈ H so k−1 ∈ Hg−1 = g−1H. Since this is true for every

k ∈ gH, we have a meaningful [g]−1 = [g−1]. (iii) Consider k ∈ gH and k′ ∈ g′H. Then k = gh and k′ = g′h′ for

some h, h′ ∈ H, so kk′ = ghg′h′. But hg′ ∈ Hg′ = g′H so hg′ = g′h′′ for some h′′. I.e. kk′ = gg′h′′h′ ∈ (gg′)H.

The cosets therefore multiply as expected. [g][g′] = [gg′]. It is easy to show that the group axioms hold as well.

• We have two natural maps associated with a normal subgroup:

– N
i−→ G is an inclusion (i.e. injection), defined by h → h (where the right-hand h

is viewed in G). The injective homomor-
phism i is defined for any
subgroup, not just nor-
mal ones.

– G
q−→ Q is the quotient map (surjection), defined by g → gN (with the right-hand

viewed as a coset, i.e. an element of G/N).
The surjective map q is
defined for any subgroup,
with Q the quotient set.
For normal subgroups,
Q is a group and q is a
homomorphism.

• By it’s definition, N is a subgroup of G. Put another way, there is a copy of N in G.
Though Q is a group derived from G and N and possesses no new info, there may or
may not be a copy of it in G. Two natural questions are: (1) when is there a copy?
and (2) how are G, N , and Q related in general? We’ll address these shortly. In fact,
doing so is the raison d’etre of these notes.

• What if we have more than one normal subgroup of G? Suppose we have N1 ◁ G and
N2 ◁ G.

– The normal subgroups of G need not all be subgroups of one another. They form
a lattice rather than a linear order.

– It is quite possible for normal subgroups to be disjoint (in the group sense) or
distinct-yet-isomorphic.

– If N1 ≈ N2, the resulting quotient groups need not be isomorphic in general.

* If they are, N1 and N2 are called “series equivalent”. The reason for this
nomenclature will become clear shortly.
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* We’ll shortly encounter a sufficient (but not necessary) condition for the
quotient groups to be isomorphic. We’ll also see that there can be some
relatively unintuitive behaviors when it comes to series-equivalent normal
subgroups.

• Prop 2.1: If G has two disjoint normal subgroups N1, N2 (in the sense that N1∩N2 =
{e}), then N1 and N2 commute with one another.

Pf: Since N1 and N2 are normal, we know that n1n2n
−1
1 = n′2 for some n2 ∈ N2 and n2n

−1
1 n

−1
2 = n′1 for some n′1 ∈

N1. Now consider n1n2n
−1
1 n

−1
2 . This equals (n1n2n

−1
1 )n

−1
2 = n′2n

−1
2 ∈ N2, but it also equals n1(n2n

−1
1 n

−1
2 ) =

n1n′1 ∈ N1. So it is in N1 ∩ N2 = {e}. But if n1n2n
−1
1 n

−1
2 = e, then n1n2 = n2n1.

This doesn’t imply that N1 or N2 commute internally, of course.

• Prop 2.2: Given G, N ◁ G, and subgroup K ⊂ G (not necessarily normal) s.t.
N ∩K = {e}, K has at most one element in each coset.

Pf: Suppose k, k′ both are in the same coset. Then k′ · k−1 ∈ N, but K is a group so k′ · k−1 ∈ K too. Since N ∩K =
{e}, the only possibility is k′ = k.

• Prop 2.3: If G has a normal subgroup N and a subgroup K (which need not be
normal) s.t. N and K are disjoint (i.e. N ∩K = {e}) and G = NK (i.e. every element
of G can be written g = nk for some n ∈ N and k ∈ K), then:

– (i) The decomposition g = nk is unique.

– (ii) Every coset gN in G/N contains a unique element of K.

– (iii) Let π1 : G → N and π2 : G → K be the projection maps that take each
g to its components (n and k in g = nk). Then π1|N = IdN , π1(K) = e,
π2|K = IdK , and π2(N) = e.

– (iv) π1 and π2 are surjective.

– (v) π2 is a homomorphism with ker π2 = N .

– (vi) K ≈ G/N , and there is a unique isomorphism αc : G/N → K s.t. αc ◦ q|K =
IdK (where q is the quotient map G → G/N).

–(vii) There is an injective homomorphism K → G.

–(viii) There is a surjective homomorphism q̃ : G → K s.t. q̃|K = IdK .

– (ix) K has a unique element in every coset of G/N .

Pf: (i) Suppose g = nk and g = n′k′. Then nk = n′k′, so n′−1n = k′k−1. But N ∩ K = {e} so this is
impossible.

Pf: (ii) Suppose k and k′ are in the same coset. Then k = k′n for some n ∈ N, which means n = k′−1k ∈
K. But N ∩ K = {e} so this is impossible. Going the other way, consider coset gN. Any g = nk, but N
and K commute, so this is kn, and knN = kN. I.e., all the g’s in the coset have the same k and differ only
in the choice of n.

Pf: (iii) Since there is a unique decomposition, k = ek and n = ne, from which all four cases directly
follow.

Pf: (iv) π1(N) = N and π2(K) = K.

Pf: (v) Let g1 = n1k1 and g2 = n2k2. Then π2(g1g2) = π2(n1k1n2k2). But N is normal, so its left

and right cosets are equal and k1n2 = n′2k1 for some n′2 ∈ N. Therefore, π2(n1n′2k1k2) = k1k2. Since
π2(e) = e as well, it is a homomorphism. Note that the same does *not* hold for π1 in general. To be in
ker π2 we need g = ne, which means g ∈ N.

Pf: (vi) We established that there exists a bijection between K and the cosets of G/N, which can be writ-
ten q|K . Since q is a homomorphism G → G/N, it restricts to one on subgroup K. A bijective homomor-
phism is an isomorphism, so we can just define αc([g]) ≡ q(π2(g)). This is well-defined because we estab-
lished that π2(x) is the same for all members of a G/N coset, so it doesn’t matter which representative g

we use. Put another way, α−1
c = q|K , which probably is the simpler way to define it in the first place.

Pf: (vii) This is just subset inclusion.

Pf: (viii) This is provided by π2, which we saw is a surjective homomorphism and has π2|K = IdK .

Pf: (ix) Since q|K defines an isomorphism K → G/N, it is bijective from K to the cosets.

Note that we need the condition that every g can be written as nk solely for the infinite case. Because an
infinite group can be isomorphic to a proper normal subgroup, we cannot guarantee that each coset con-
tains an element of K otherwise. q : G → G/N is a surjective homomorphism which restricts to an
injective homomorphism taking subgroup K to subgroup q(K) ⊂ G/N. Even if we had an isomorphism
α : G/N → K, this only would give us an injective homomorphism K → K via α ◦ q|K . For an infinite
group this is entirely possible. We therefore have to explicitly postulate that each g has a decomposition
into nk.
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• Prop 2.4: Given group G, normal subgroup N◁G, and subgroupK ⊂ G (which need
not be normal), if N ∩K = {e} and q|K is an isomorphism K → G/N , then G = NK.
I.e. given G, N ◁ G, and K ⊂ G s.t. N ∩K = {e} the conditions G = NK and ”q|K is an isomorphism” are equivalent.
It follows that all of the results of Prop 2.3 hold if N ∩K = {e} and q|K is an isomorphism.

Pf: If G = NK, then Prop 2.3 tells us that q|K defines an isomorphism K → G/N. Going the other way, we are told

q|K is an isomorphism. Consider k ≡ q|−1
K

(q(g)). This picks out the representative element of the quotient-class for g.

Trivially, q(k) = q(g), so k and g are indeed in the same class. But this means g = nk for some n ∈ N.

Why can’t we replace ”q|K is an isomorphism” with the weaker condition K ≈ G/N? Suppose K ≈ G/N. Prop 2.2
tells us that since N ∩ K = {e}, K has at most one element in each coset. I.e. q|K : K → G/N is an injective ho-
momorphism. K ≈ G/N implies a bijection between K and G/N. For finite G/N, this guarantees that every coset has
one element of K, which means q|K must be surjective as well and thus an isomorphism. However, for infinite G/N, we
have no such guarantee. It is quite possible to have a bijection between K and G/N, yet also have some cosets with no
element of K. This is analogous to the fact that an infinite set can be bijective with a proper subset of itself. q|K is an
isomorphism to some (infinite) subgroup of G/N, but this can be a proper subgroup. Note that the obstruction is the
possible absence of an element of K from some cosets rather than the possible presence of multiple elements of K in the
same coset. Prop 2.2 promises us the latter cannot happen.

• Prop 2.5: If the conditions of Prop 2.3 hold and K is normal (i.e. we’re dealing
with two normal subgroups N1 and N2) then we also have:

– (i) N1 and N2 commute with one another.

– (ii) Every coset gN2 in G/N2 contains a unique element of N1.

– (iii) N1 ≈ G/N2, and there is a unique isomorphism βc : G/N2 → N1 s.t. βc ◦
q′|N1 = IdN1 (where q′ is the quotient map G → G/N2).

– (iv) π1 is a (surjective) homomorphism with ker π1 = N2.

– (v) There is an injective homomorphism N1 → G.

– (vi) There is a surjective homomorphism q̃′ : G → N1 s.t. q̃′|N1
= IdN1

.
Pf: (i) follows from Prop 2.1. The rest follow directly from Prop 2.3 by reversing the roles of the subgroups
(since both now are normal). I.e. using N = N2 and K = N1.

2.2 Freeness and Transitivity of Group Action on Self

• There is a large and vibrant theory of group actions on sets, algebraic objects, and
topological objects. For our purposes, we’ll only care about the general notion.

• Here, Aut(S) denotes whatever is the relevant automorphism group for S. I.e. bijec-
tions for sets, homeomorphisms for topological spaces, diffeomorphisms for manifolds,
etc.
Note that even if S has no group structure, Aut(S) always is a group. This follows from the invertibility and compos-
ability of automorphisms of any type.

• Action of Group G on S (aka left-action): A homomorphism ρ : G → Aut(S).
• Orbit of point x ∈ S (under action ρ of G): The set of points ρG(x). I.e. ρg(x) for
every g ∈ G. This is the set of points we can reach from x via the action of G.

• Transitive action: Given any x, x′ ∈ S, there is some g s.t. ρg(x) = x′. I.e., we can
get from any point to any other point via the action of G. Put another way, S consists
of a single orbit under ρ.

• Free action: ρg(x) = x iff g = e. I.e., every non-trivial g moves every point in S.
• Left multiplication of G: This is the action of G on itself (as the set S = G) via
left-multiplication. I.e., ρg(h) = g · h.
There also is a right-action, defined in the obvious manner.

• Prop 2.6: Left-multiplication of G on itself is a free and transitive action.
• Prop 2.7: If H ⊂ G is any subgroup, left-mult of G on itself induces an action of G
on the quotient set G/H via ρg([h]) ≡ [gh].
Note that G/H is a set (and possibly a manifold if G is a Lie Group), but not a group unless H ◁ G.
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2.3 Isomorphism Thms

Let’s recall the “isomorphism theorems” for groups. Note that different people call these
different things, and there is no uniform convention for the names.

• First Isomorphism Thm: Given any two groups G and H and a homomorphism ϕ :
G → H, the following hold:

– ker ϕ is a normal subgroup of G

– Im ϕ is a subgroup of H

– Im ϕ is isomorphic to the quotient group G/ker ϕ. It follows that if ϕ is sur-
jective then H ≈ G/ker ϕ
as well.

–

Again, we have to ask: since ker ϕ is a normal subgroup of G, and Im ϕ is isomorphic to the quotient group
G/ker ϕ (which ”sort of” may have an image in G), is it meaningful to write something like (playing fast and

loose with notation) G
?
= ker ϕ ⊕ Im ϕ? The answer is no — it’s more complicated. We’ll discuss this shortly.

– If ϕ is surjective, there is a natural isomorphism H ≈ G/ker ϕ which arises, so
let’s state it explicitly. It is α : G/ker ϕ → H given by α([x]) ≡ ϕ(x).
Pf: This is well-defined because ϕ respects quotient classes. Let x′ and x be in the same coset. Then x′ = xk for
some k ∈ ker ϕ. This means ϕ(x′) = ϕ(xk) = ϕ(x)ϕ(k). But ϕ(k) = e since k ∈ ker ϕ. So ϕ(x′) = ϕ(x). To see
that α is a homomorphism, we note that (i) α([e]) = ϕ(e) = e and (ii) α([x][y]) = α([xy]) (by the group mult on
G/ker ϕ) and α([xy]) = ϕ(xy) = ϕ(x)ϕ(y) = α([x])α([y]).

• Second Isomorphism Thm: Given any group G and subgroup H ⊆ G and normal
subgroup N ⊴ G, the following hold:

– HN is a subgroup of G (where HN is all products of elements).
– H ∩N is a normal subgroup of H.
– (HN)/N ≈ H/(H ∩N).
– Note that this does not imply H ∩N is normal in G. This is a stronger condi-

tion because gNg−1 ∈ N
for all g ∈ G not just all
g ∈ H.• Third Isomorphism Thm: Given any group G and subgroup H ⊆ G and normal

subgroup N ◁ G s.t. N ⊆ H ⊆ G, the following hold:

– H/N is isomorphic to a subgroup of G/N . If H ◁ G, then H/N is isomorphic to
a normal subgroup of G/N . I.e., G/N effectively adds

equiv classes to H/N
rather than changing
those in H/N.

– Every subgroup of G/N is of this form for some subgroup H, and every normal
subgroup of G/N is of this form for some normal subgroup H.

– If H ◁ G, then (G/N)/(H/N) ≈ G/H.

–
I.e. the set of subgroups containing N is bijective with the set of subgroups of G/N, and the set of normal sub-
groups containing N is bijective with the set of normal subgroups of G/N.

• Some useful properties of normal subgroups and quotient groups:

– Prop 2.8: If N ⊴ G and N ⊆ H ⊆ G (subgroups), then N ⊴ H. Pf: If gNg−1 ∈ N for all
g ∈ G then it holds for
all g ∈ H ⊆ G.– Note that H ◁N and N ◁G do not imply H ◁G. We do not have transitivity of

normality.
The dihedral group of
order 8 is a counterexam-
ple.

– Prop 2.9: If f : G → H is a surjective homomorphism, it preserves normality
of subgroups. I.e., if N ◁ G then f(N) ◁ H.

Pf: Let N ⊴ G. We want to show that for any h ∈ H and n ∈ N, hf(n)h−1 = f(n′) for some n′ ∈ N.

This way hf(N)h−1 = f(N). Since f is surjective, h = f(g) for some g (it doesn’t matter if g is not unique).

Consider f(gng−1) = f(h)f(n)f(g)−1. Since N is normal in G, ∃n′ s.t. gng−1 = n′. So f(h)f(n)f(g)−1 =

f(n′) and we are done. If f wasn’t surjective, this wouldn’t work of course.
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– Prop 2.10: If f : G → H is a homomorphism and N ◁H, then f−1(N)◁G. Put
simply, the inverse image of a normal subgroup is normal.
Bear in mind that f−1 is not a homomorphism in general. It is a one-to-many map unless f is injective.

Pf: Let N ◁ H. Define K ≡ f−1(N), and suppose it is not normal in G. Then ∃g ∈ G, k ∈ K s.t. gkg−1 ̸∈ K.

This means f(g)f(k)f(g−1) ̸∈ f(K) = N. But f(k) ∈ N and f(g) ∈ H so we have hnh−1 ̸∈ N for some n ∈ N
and h ∈ H, which violates our assumption.

– Given N ◁ G, with quotient group Q ≡ G/N with quotient map (i.e. projection)
q : G → Q, ker q = N .

– How do things map under homomorphisms? Let f : G → H be a homomorphism:

* Subgroups are mapped to subgroups.
* If f is surjective, normal subgroups are mapped to normal subgroups.
* Let N ◁G and M ◁H. Then f induces a homomorphism from G/N to H/M

iff f(M) ⊆ N .
See https://math.stackexchange.com/questions/3938314/group-homomorphism-between-quotient-groups for a discussion.

– The normal subgroups of G are the kernels of homomorphisms from G to other
groups.
This doesn’t imply a bijection. Every normal subgroup is the kernel of at least one such homomorphism, and the
kernel of any such homomorphism is a normal subgroup. However, there are many homomorphisms with the same
kernel – so the map from homomorphisms to normal subgroups is surjective but not injective.

– The quotient groups of G (i.e. G/N for normal subgroups N) are the images of
homomorphisms from G to other groups.
The same considerations hold as for normal subgroups and kernels. The map from homomorphisms to quotient
groups is surjective but many-to-one. In fact, normal subgroups and quotient groups can be considered dual from
a certain standpoint (from another category theory standpoint, quotient groups and general subgroups can be
viewed as dual).

– I.e., the normal subgroups are kernels of homomorphisms and the quotient groups
are images of homomorphisms.

– Prop 2.11: Given any homomorphism f : G → H and any N ◁G s.t. N ⊆ ker f ,
there is an induced homomorphism f ′ : G/N → H. I.e. under this condition f
respects equivalence classes.
Pf: f is a surjective homomorphism to f(G), so it gives rise to a normal/quotient relation of its own via
G/(ker f). The corresponding cosets are of the form g(ker f). Clearly, f is constant on each since f(gh) =
f(g)f(h) = f(g)e = f(g) for h ∈ ker f. But each coset gN ⊆ g(ker f), so each is contained in a coset
of ker f and thus f is constant on it and respects the classes of G/N. This means it defines a homomorphism

f′ : G/N → H given by f′([x]) = f(x), which we have seen is well-defined. Note that Im f′ = Im f.

– Prop 2.12: Given groupsG1 andG2, normal subgroupsN1◁G andN2◁G2, and a
homomorphism f : G1 → G2 s.t. f(N1) ⊆ N2, there is a natural homomorphism
f̃ : G1/N1 → G2/N2.

* See https://math.stackexchange.com/questions/36911/induced-homomorphism-by-passing-to-the-quotient for a discussion.

*

Pf: By the first homomorphism thm, we have a surjective quotient homomorphism q′ : G2 → G2/N2 with

ker q′ = N2. Therefore, we have a (not-necessarily surjective) homomorphism f∗ : G1 → G2/N2 given by

q′ ◦ f. Since ker q′ = N2, ker q′ ◦ f = f−1(ker q′) = f−1(N2). Since f(N1) ⊆ N2, N1 ⊆ f−1(N2).
I.e., N1 ⊆ ker f∗. By prop 2.11, this means f∗ is class-respecting on G1 and there is an induced map

f̃ : G1/N1 → G2/N2 (what we called f′ in prop 2.11) given by f̃([x]) ≡ (q′ ◦ f)(x).

*

Intuitively, all that is being said is that the map f must respect classes on both ends — mapping all ele-
ments of a class in G1/N1 to a single class of G2/N2 (though it needn’t do so surjectively). This is accom-
plished if f(N1) ⊆ N2 because then we are guaranteed to see cosets go to cosets.

2.4 Automorphisms and Isomorphisms

• Automorphisms can behave a little counterintuitively, so let’s briefly consider some of
their properties.

• Automorphisms need not preserve subgroups.

– Like any homomorphism, an automorphism maps a subgroup to a subgroup —
but it need not be the same subgroup.
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– Put another way, an automorphism of G need not restrict to an automorphism
of H ⊂ G.

–

Suppose f : G → G is the automorphism. Then f takes a subgroup of G to a subgroup of G and f−1 does the

same. Moreover, f ◦ f−1 = IdG. However, it is perfectly possible for f to take H ⊂ G to H′ ⊂ G (and f−1 to
take it back).

–

As an example, consider SO(3). Topologically, it is S2. Great circles are subgroups corresponding to rotation
around a given axis (i.e. they are copies of SO(2)). If we pick an axis and rotate the sphere around it, we take
great circles into great circles, but (other than the unique great circle transverse to the axis) each great circle

moves to a different one. I.e. H ̸= H′.

– Given f ∈ Aut(G), there are three things which can happen: (i) f takes subgroup
H into a different subgroup H ′, (ii) f takes H into itself but moves elements
around inside it (i.e. f(H) = H overall), and (iii) H is fixed under f (i.e. f(h) = h
for all h ∈ H).

– In all cases, H is isomorphic to H ′ (with f |H the isomorphism).

– This carries over to normal subgroups. An automorphism maps normal subgroup
N to isomorphic normal subgroup N ′, but we need not have N = N ′ in general.
Even if we do, the automorphism can move around elements within N (i.e. it can
restrict to an automorphism on N rather than being IdN ).

–
A subgroup H ⊂ G for which every automorphism on G restricts to one on H is termed a ”Characteristic Sub-
group”.

• Similarly, not every automorphism on H need extend to one on G. There may be
automorphisms on H which are not the restriction of any automorphism on G.

•

Note that when speaking of automorphisms, we should not confuse f−1(g) with f(g)−1. For an ordinary isomorphism

f : G → H, there is no danger of confusion because f−1(g) has no meaning (since f−1 : H → G). But for automor-
phisms it is possible to confuse the multiplicative inverse of an element with the inverse image under the automorphism.
Only if f happens to take g to its inverse would the two be the same. Note that in general, the multiplicative-inverse

map g → g−1 is *not* an automorphism because (gh)−1 ̸= g−1h−1 but rather is h−1g−1. Only if G is abelian is it
an automorphism.

• A few useful tips when proving maps are homomorphisms or isomorphisms:

– To prove a map f : G → H is a homomorphism we need only prove that (i)
f(e) = e and (ii) f(gh) = f(g)f(h).

The fact that f(g−1) = f(g)−1 (again, multiplicative inverse, not fn inverse) follows because f(gg−1) = f(e) =

e = f(g)f(g−1), and the same on the left.

– To prove a map is an isomorphism we need only prove it is a bijective homomor-
phism.
In fact, this commonly is taken as the definition of an isomorphism (as opposed to the existence of an inverse ho-
momorphism). It is entirely equivalent.

– If we have an injective homomorphism f : G → H, then we have an isomorphism
f : G → f(G) ⊆ H.

• Some notes on group isomorphisms in general:

– Two groups are isomorphic iff ∃ an isomorphism between them. However, there
may be more than one such isomorphism. In a given situation, there may or may
not be a natural choice of isomorphism. Even if one arises naturally, it may not
be the isomorphism we care about.

– This is most easily seen with Aut(G). If there only was one isomorphism, Aut(G)
would be trivial.
Although IdG is a ”natural” choice of automorphism, it is trivial and rarely what we care about.

An an example we will encounter below, given two isomorphic normal subgroups N ≈ N′ of G, we may care
whether ∃ an automorphism of G which restricts to an isomorphism between N and N′. There may or may not
be.

– Warning: Given groups G and H, it is possible for there to be injective homo-
morphisms G → H and H → G but no isomorphism between G and H.
This is in stark contrast to sets, where a pair of injective maps guarantees a bijection via the Schroder-Bernstein
thm. For groups, the counterexamples necessarily are infinite. See https://math.stackexchange.com/questions/1259081/

if-there-are-injective-homomorphisms-between-two-groups-in-both-directions-are for a discussion.
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• Prop 2.13: If G ≈ H, then

– (i) Aut(G) ≈ Aut(H)

– (ii) Any specific isomorphism α : G → H induces a specific isomorphism α∗ :
Aut(G) → Aut(H) given by α∗(γ) ≡ α ◦ γ ◦ α−1.

– (iii) Iso(G,H) is bijective with Aut(G) (and thus with Aut(H)).

– (iv) Any two isomorphisms, α, α′ : G → H are related by α′ = α ◦ γ for a unique
γ ∈ Aut(G) and (equivalently) by α′ = β ◦ α for a unique β ∈ Aut(H).

–
Just as there may be no natural choice of isomorphism G → H, there may be no natural choice of isomorphism
Aut(G) → Aut(H).

–

Pf: (i,ii) Pick a specific isomorphism α : G → H. We define the isomorphism ρ : Aut(G) → Aut(H) via ρ(γ) ≡
α ◦ γ ◦α−1. This trivially is a homomorphism since ρ(IdG) = IdH and ρ(γ ◦ γ′) = α ◦ γ ◦α−1 ◦α ◦ γ′ ◦α−1 =

ρ(γ) ◦ ρ(γ′). I.e., it is a homomorphism due to the properties of invertible-function composition. We can use an

identical argument to define ρ′(β) ≡ α−1 ◦ β ◦ α as a homomorphism Aut(H) → Aut(G). Let’s show they are

inverses. ρ′(ρ(γ)) = α−1 ◦ α ◦ γ ◦ α−1 ◦ α = γ. A similar argument shows that ρ(ρ′(β)) = β. Note this
proof depends heavily on the invertibility of α, β, and γ, so mere homomorphisms would not work. We’ve also

exhibited the specific isomorphism needed for (ii). α∗(γ) ≡ α ◦ γ ◦ α−1.

–

Pf: (iii) Pick any fixed isomorphism α : G → H. Given any γ ∈ Aut(G), we have a unique α′ : G → H given by

α ◦ γ. Why is it unique? Suppose α ◦ γ = α ◦ γ′. Since γ and α both are invertible, we could compose α−1 on

the left and γ−1 on the right to get γ′ ◦ γ−1 = IdG. Aut(G) is a group, so each element has a unique inverse.
We thus have an injective map (dependent on our choice of α, of course) from Aut(G) to Iso(G,H), which we’ll

call ρα (i.e. ρα(γ) ≡ α ◦ γ). Let’s show it’s surjective as well. Given any isomorphism α′ : G → H, we need a

γ ∈ Aut(G) s.t. α′ = α◦γ. I.e., α′ ∈ ρα(Aut(G)). Compose α−1 on the left to get γ = α−1 ◦α′. We thus have
surjectivity, and our map is a bijection. Note that Iso(G,H) is not a group and ρα is *not* a homomorphism.

–

Pf: (iv) Along similar lines, suppose we have isomorphisms α, α′ : G → H. Define γ ≡ α−1 ◦ α′. Then γ ∈
Aut(G) and α′ = α ◦ γ. Note that we could just as well have done it the other way to get α from α′ using the

automorphism γ−1 = α′−1 ◦ α. On the other end, if we define β ≡ α′ ◦ α−1 then α′ = β ◦ α. Again, we equally

well could have written α = β−1 ◦ α′.

2.5 Uniqueness of normal and quotient groups

• Prop 2.14: Given G, there is a canonical bijection between the set of normal sub-
groups and set of quotient groups. I.e., each normal subgroup defines a unique quotient
group, and no G/N = G/N ′ for N ̸= N ′.
Pf: Given N, G/N is the group of cosets of N in G — so by construction it is unique. Moreover, [e] = N, so it cannot

be the quotient of any other N′ or we would need N = N′.

Note that we have to be a bit careful here. We should not confuse this with the fact that an automorphism of N doesn’t
necessarily induce one on G or G/N. It is quite possible to have an automorphism N → N which does not extend to one
on G, in which case the resulting G/N may not map to itself automorphically either. However, that is a question of how
things transform. Here, we are simply asking whether the quotient group is unique. N is a particular subgroup and G/N
is a particular group derived from it. So yes, it is.

• This speaks to exact equality, but what about isomorphism? Let’s now consider this.
• Suppose N and N ′ are normal subgroups of G and N ≈ N ′. In general, the quotients
need not be isomorphic. I.e. G/N ̸≈ G/N ′. However, we have the following case
where the quotients always are isomorphic.

• Prop 2.15: If N ◁ G and N ′ ◁ G and N ≈ N ′ via some isomorphism h : N → N ′

which extends to an automorphism on G, then G/N ≈ G/N ′.

–
I.e. if ∃α ∈ Aut(G) s.t. α|N is an isomorphism N → N′, then G/N ≈ G/N′.

– Put another way, in this case N and N ′ are series-equivalent.

–

Pf: Suppose N ◁ G and N′ ◁ G and N ≈ N′ via some isomorphism h : N → N′. A coset of N is gN, and

h(gN) = h(g)h(N) = h(g)N′ is a coset of N′. The same holds the other way using h−1. So we have a bijection

between cosets of N and those of N′ (i.e. a bijection between G/N and G/N′). This map k : G/N → G/N′ is

defined as k([g]) ≡ [h(g)]′ (where [g] = gN is a coset of N and [g]′ = gN′ is a coset of N′). The homomorphism

properties of h then carry over to k. Since h(e) = e, k([e]) = [e]′ and since h(g−1) = h(g)−1, k([g]−1) =

k([g−1]) = [h(g−1)]′ = [h(g)−1]′ = [h(g)]′−1. Similarly, h(gg′) = h(g)h(g′) implies k([g][g′]) = k([gg′]) =

[h(gg′)]′ = [h(g)h(g′)]′ = [h(g)]′[h(g′)]′. As a bijective homomorphism, k is an isomorphism. So Q ≈ Q′. Note

why we needed h to be the restriction of an automorphism of G rather than just an isomorphism N → N′. We
must apply h to arbitrary g ∈ G, not just h ∈ H. Similarly, it couldn’t just be a homomorphism G → G that
happens to restrict to an isomorphism N → N′ because we need the same to hold of its inverse.
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– This is the sufficient (but not necessary) condition alluded to earlier for the
quotients to be isomorphic.

– It is quite possible to have isomorphic normal subgroups but no G-automorphism
which maps them to one another. In that case, the condition for this result is
violated and G/N may or may not be isomorphic to G/N ′.

–

As we will see when discussing short exact sequences, the ”not-necessary” part can give rise to some unintuitive
situations. The cases where no such extension exists yet N1 and N2 are series-equivalent are termed ”series-
equivalent non-automorphic”, and we’ll have more to say about them later.

–
See https://math.stackexchange.com/questions/40881/isomorphic-quotients-by-isomorphic-normal-subgroups and https://groupprops.

subwiki.org/wiki/Series-equivalent_not_implies_automorphic for some examples.

• It also is possible to have isomorphic quotient groups without having isomorphic nor-
mal subgroups.
See https://math.stackexchange.com/questions/40881/isomorphic-quotients-by-isomorphic-normal-subgroups and https://math.stackexchange.

com/questions/1584568/isomorphic-quotient-groups-fracgh-cong-fracgk-imply-h-cong-k and https://math.stackexchange.com/questions/40763/

isomorphic-quotient-groups/ for a detailed discussion of various situations and some examples.

• In summary, the following unintuitive situations can arise:

– N1 ≈ N2 but G/N1 ̸≈ G/N2.
– N1 ̸≈ N2 but G/N1 ≈ G/N2.
– N1 ≈ N2 and G/N1 ≈ G/N2 but no automorphism on G takes N1 to N2.

2.6 Similar concepts

Normal subgroups should not be confused with certain similar concepts:

• The center of group G is the set of all elements which commute with the entirety
of G. It is a normal subgroup and typically is denoted Z(G).

– Obviously, Z(G) is abelian.

–

Note that other normal subgroups of G need not be in the center. Normality requires that ghg−1 ∈ N for all

g ∈ G and h ∈ N, whereas Z(G) requires that gzg−1 = z for all g ∈ G and z ∈ Z(G). Put another way,
N commutes with G set-wise but not at the level of individual elements, whereas Z(G) commutes with G at the
level of individual elements.

– The center is *not* a functor from GRP to AB, because it is not preserved by homomorphisms.

– Z(G) = G iff G is abelian.

– If Z(G) is trivial, then no nonidentity element commutes with all of G.

– Prop 2.16: If H ⊂ G, then (Z(G) ∩H) ⊆ Z(H).
Pf: Suppose x ∈ Z(G) ∩ H (i.e. it’s an element of H in Z(G)). Then it commutes with all of G and thus H too.
So x ∈ Z(G)∩H implies x ∈ Z(H). However, it is possible to have x ∈ H which commutes with all of H but fails
to commute with all of G. In that case, x ∈ Z(H) but x /∈ Z(G) ∩H.

• The commutator of two elements of G is [g, h] ≡ g−1h−1gh.

– Obviously, it is e iff g and h commute.

– Also, [g, h] = [h, g]−1.

–

This should not be confused with the commutator in a matrix-based Lie Algebra, which is [x1, x2] = x1x2 −
x2x1. There, we define the bracket in terms of the associative multiplication of matrices, and subtraction is part
of the the vector-space structure. For groups, we have a single operation and no notion of subtraction.

• The commutator subgroup of G is the subgroup of G generated by all its commu-
tators.

– Denoted [G,G].

–
Note that G isn’t just the set of commutators. It is *generated* by that set. I.e., it consists of all products of

commutators. The inverses are included automatically, because [g, h] = [h, g]−1.
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– [G,G] is a normal subgroup of G.

– [G,G] is preserved by homomorphisms (most notably, automorphisms) and de-
fines an endofunctor on GRP .

– In general, [G,G] is not abelian (and thus is not a subgroup of Z(G)).

– [G,G] is trivial iff G is abelian.

– If [G,G] = G, it does not mean that no two (non-identity) elements of G com-
mute. This just means that every element of G appears as the product of com-
mutators of some pairs of elements.
Equivalently, it means that G can be generated from some set of commutators of elements.

– Perfect Group: Satisfies [G,G] = G. In a sense, a perfect group is maximally
non-abelian.

• The abelianization of group G is the quotient group G/[G,G].

– It is a group because [G,G] ◁ G, but it need not be isomorphic to a subgroup of G.

– G/[G,G] is abelian.

– It is preserved by homomorphisms, and thus defines a functor from GRP to AB.
This turns out to be the free construction going from GRP to AB and is the left adjoint of the inclusion functor
from AB to GRP (which is just the corresponding forgetful functor).

– Basically, the quotient removes all nontrivial commutators by assigning them to
identity.

– G/[G,G] is trivial iff G is a perfect group (i.e. [G,G] = G).

– G/[G,G] = G iff G is abelian (in which case [G,G] is trivial).

–

Again, the abelianization is *not* necessarily isomorphic to a subgroup of G. Even if it happens to be, it need
not be isomorphic to a normal subgroup. Put another way (in language we have yet to discuss), the SES e →

[G,G]
i−→ G

q
−→ G/[G,G] → e need not right-split, let alone left-split.

• Some notes:

– A group G may have many normal subgroups but it always has a unique center
Z(G), commutator subgroup [G,G], and abelianization G/[G,G].
Of course, any of these may equal G or be trivial.

– For an abelian group: Z(G) = G and G/[G,G] = G and [G,G] = {e}.
– For a perfect group: Z(G) = {e} and G/[G,G] = {e} and [G,G] = G.
– A subgroup of G can be abelian without being in the center or even normal.

To be abelian, we only need [h1, h2] = e for all h1, h2 ∈ H. I.e., [H,H] = e. To be in the center, we need

[G,H] = e. To be normal, we need gHg−1 ∈ H for all g ∈ G, but the fact that H commutes with itself doesn’t
give us that.

Ex. consider SO(3), the group of rotations in 3D. It is nonabelian, but SO(2) ⊂ SO(3) is abelian (we can
pick this subgroup in many ways, corresponding to a choice of axis of rotation, but it doesn’t matter which we
choose). SO(3) has no nontrivial proper normal subgroups, so SO(2) is not normal in it. SO(2) also doesn’t
commute with it, so it isn’t in the center.

2.7 Inner and Outer Automorphisms

These notions only will be used in the addendum where we explicitly construct group mul-
tiplication for a group extension. They may be skipped if those details are not of interest
to the reader.

• Given a group G, we have the group Aut(G) of its automorphisms. These may be
divided into inner and outer automorphisms via a normal/quotient relationship of
their own.
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• Inner automorphism of G: Any automorphism of the form h → ghg−1 for some
fixed g ∈ G (and all h ∈ G). I.e., a conjugacy automorphism G → gGg−1.

– The inner automorphism gGg−1 usually will be denoted ϕg : G → G.
– The set of these is denoted Inn(G).
– Inn(G) is a subgroup of Aut(G).

Pf: Multiplication on Aut(G) is composition. For inner automorphisms, ϕ
gg′ (h) = gg′h(gg′)−1 =

gg′hg′−1g−1 = ϕg(ϕ
g′ (h)). Also, IdG = ϕe so Inn(G) contains the identity.

– Inn(G) is normal in Aut(G).

Pf: Let α ∈ Aut(G). (α ◦ ϕg ◦ α−1)(h) = α(gα−1(h)g−1) = α(g)α(α−1(h))α(g−1) = α(g)h(α(g))−1 which

is of the form g′hg′−1 and thus a conjugacy automorphism. Note that (α(g))−1 is the multiplicative inverse

element in G of α(g). It is not to be confused with α−1(g), which denotes the inverse automorphism applied to
g.

– ϕg(h) commonly is written gh as well. We won’t use this notation.
– Some people use g−1hg and hg instead. This is entirely equivalent, though the
individual elements of Inn(G) then would be labeled differently.

– Inn(G) kind of measures the failure of G to commute.

* Prop 2.17: G is abelian iff Inn(G) is trivial.

– Prop 2.18: ϕ ∈ Aut(H) is inner iff it extends to an inner automorphism on all
groups containing H.

* I.e., if H ⊂ G and ϕ ∈ Inn(H) then ϕ ∈ Inn(G).
* Put another way, inner automorphisms remain inner if we grow the group.

• Outer automorphism group Out(G): The quotient groupOut(G) ≡ Aut(G)/Inn(G).

–

Note that the term ”Outer automorphism” itself can be used in two ways. It could be an element of Out(G),
which is a class of automorphisms rather than an individual automorphism. We less commonly care about
Aut(G) − Inn(G), but some people use ”outer automorphism” to refer to an element of this instead (i.e., any
automorphism which is not inner).

– As with any other quotient, Aut(G) could be a direct sum, semidirect product,
or general group extension of Out(G) by Inn(G).
The purpose of these notes is to develop these very notions, so don’t worry about them now. This just is an ob-
servation for future reference.

• Prop 2.19: There is a natural surjective homomorphism ϕ : G → Inn(G) given by
g → ϕg.

Pf: ϕe(a) = a so ϕe = IdG and the identity is preserved. ϕ
gg′ (h) = gg′hg′−1g−1 = ϕg(ϕ

g′h) and multiplication is

honored. Surjective follows from the definition of Inn(G).

Why isn’t ϕ an isomorphism? The only culprit could be a failure of injectivity. Is it possible that ϕg = ϕ
g′ for g ̸= g′?

Yes. For example, any element x ∈ Z(G) commutes with all of G, so ϕx = ϕe. As we will see shortly, this is the only
obstruction. If Z(G) = e then G ≈ Inn(G).

• Prop 2.20: An inner automorphism ϕh equals IdG iff h ∈ Z(G).

– I.e., ker ϕ = Z(G), where ϕ is the homomorphism G → Inn(G) in prop 2.19.

–
Pf: If h ∈ Z(G), then it commutes with G so we get IdG. If ϕh = IdG, then hgh−1 = g for every g ∈ G. I.e., h
commutes with every element and thus is in Z(G).

• Prop 2.21: Inn(G) ≈ G/Z(G).
Pf: We have a surjective homomorphism ϕ : G → Inn(G) with ker ϕ = Z(G). The first homomorphism thm tells us
Inn(G) ≈ G/Z(G).

– Cor: If Z(G) = e then Inn(G) ≈ G.
– Cor: If G is abelian, Inn(G) is trivial.

• Prop 2.22: If H ⊂ G, then Inn(H) is isomorphic to a subgroup of Inn(G).
Pf: There’s an injective homomorphism Inn(H) → Inn(G) given by ϕh∈H → ϕh∈G. Why is it injective? If ϕh and
ϕ
h′ are distinct inner automorphisms of H, then they remain distinct when extended to all of G. Even if they don’t dif-

fer on the rest of G, they still must on H ⊂ G.
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• Let H ⊂ G. There are several obvious ways to restrict things to H:

– 1. We can restrict a general automorphism f of G to f |H on H. However, f |H
is not necessarily an automorphism of H. I.e., automorphisms of G do not
necessarily restrict to automorphisms on H.
f need not map H to itself. It could map it to a subgroup of itself (if H is infinite) or to some other iso-
morphic subgroup of G.

– 2. We can restrict an inner automorphism on G to H. I.e., we apply ϕg only to
H (but allowing g ∈ G). In general, this does not yield an automorphism of
H for the same reason as above. For a normal subgroup N ◁G, it does yield
an automorphism of N but not necessarily an inner automorphism of N .
Pf: ϕg conjugates N by an element of g and thus takes N to N (though it can move elements around
within N, of course). As such, it produces an automorphism of N. However, an inner automorphism of N
requires conjugation by an element of N itself. There may be no n ∈ N s.t. (ϕn)|N = (ϕg)|N .

– 3. We can consider the subgroup of Inn(G) consisting of conjugacy by ele-
ments of H (though still viewed as automorphisms on G). We’ll denote
this InnH(G) ⊂ Inn(G). Each such element clearly restricts to an inner
automorphism of H as well. In fact, InnH(G)|H = Inn(H)).

– Prop 2.23: Inn(H) ≈ InnH(G) iff (Z(G) ∩H) = Z(H). However, we always
have a surjective homomorphism InnH(G) → Inn(H).
Pf: Let ϕ′h denote an element of Inn(H) and let ϕh denote an element of InnH (G). The map f : InnH (G) →
Inn(H) given by f(ϕh) ≡ ϕ′h is a surjective homomorphism. To see this note that ϕ′h is just the restriction of

ϕh to H. Since f(ϕe) = ϕ′e = IdG and f(ϕh ◦ ϕ
h′ ) = f(ϕ

hh′ ) = ϕ′
hh′ = ϕ′h ◦ ϕ′

h′ , we have a homomorphism.

Surjectivity of f is trivial. This is just a pedantic demonstration of the obvious relationship: the restriction of
InnH (G) to H. However, f is not injective in general. It is possible that two elements of InnH (G) differ on

their action outside of H but not on their action within H. Suppose ϕ′h = ϕ′
h′ for some h ̸= h′. Then ϕ′

hh′−1 =

IdH , which means hh′−1 commutes with H. Since h ̸= h′ by assumption, hh′−1 ̸= e and Z(H) is nontrivial.

Conversely, if x ∈ Z(H) then pick any h and let h′ = xh (which can’t equal h). I.e. hh′−1 ∈ Z(H). Then

ϕ′h ◦ ϕ′
h′−1 = ϕ′e = IdH , so ϕ′h = ϕ′

h′−1
−1. Because ϕ′ is a homomorphism H → Inn(H), ϕ′h

−1 = ϕ′
h−1

(since ϕ′h ◦ ϕ′
h−1 = ϕ′

hh−1 = ϕ′e = IdH ). So ϕ′h = ϕ′
h′ . We thus have shown that ϕ′h = ϕ′

h′ iff hh′−1 ∈ Z(H).

Similarly, ϕh = ϕ
h′ on G iff hh′−1 ∈ Z(G) ∩ H. I.e., we can have ϕh ̸= ϕ

h′ on G but ϕ′h = ϕ′
h′ on H iff

hh′−1 ∈ (Z(H) − (Z(G) ∩ H)). This is the situation in which injectivity fails, because ϕh and ϕ
h′ are distinct

but ϕ′h and ϕ′
h′ are not. f therefore is an isomorphism (bijective homomorphism) iff Z(H) = Z(G) ∩ H. If it’s

not, all we have is a surjective homomorphism f : InnH (G) → Inn(H).

– We saw that not every automorphism ofG restricts to an automorphism ofH ⊂ G
(or even on N◁G). However, we also saw that every inner automorphism of N◁G
is the restriction of (at least) one on G. It is natural to ask whether every general
automorphism of H ⊂ G (or perhaps of N ◁ G) extends to an automorphism of
G. The answer in both cases is no. There may be automorphisms on H (even if
normal) which are not the restriction of any automorphism of G.

– I.e., G can have automorphisms which don’t restrict to automorphisms on H and
H may have automorphisms which don’t extend to automorphisms on G.

• Prop 2.24: Inner automorphisms preserve normal subgroups.
Pf: An automorphism maps normal subgroup N ⊂ G to isomorphic normal subgroup N′ ⊂ G, though N need not equal
N′ in general. But an inner automorphism ϕg is just conjugation by g, and conjugation preserves a normal subgroup N
(though it may move elements within it, of course).

• Prop 2.25: If N ◁ G, there is a natural homomorphism α : Inn(G) → Aut(N) given
by α(f) = f |N .

–
Pf: We saw this before. Every inner automorphism of G restricts to an automorphism of N. The fact that α is a
homomorphism follows trivially from composition.

– α restricts to the isomorphism (or equality, depending how we wish to write it)
InnH(G) ≈ Inn(H) when confined to InnH(G) as its domain.

• Prop 2.26: If N ◁ G, there is a natural homomorphism G → Aut(N).
Pf: We saw there is a natural surjective homomorphism ϕ : G → Inn(G) taking g to ϕg . We also have a natural ho-
momorphism α : Inn(G) → Aut(N) given by α(ϕg) = (ϕg)|N . Composition gives us a (not necessarily surjective)
homomorphism α ◦ ϕ.
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• Prop 2.27: Given N ◁ G, we have a natural homomorphism β : G/N → Out(N).
Pf: As seen above, we have a homomorphism γ : G → Aut(N) given by γ(g) = (ϕg)|N . We also have a surjective
homomorphism f : InnN (G) → Inn(N). Note that γ gives us a natural way to twist N by moving around all of G,
but that is too much freedom. A general homomorphism G → Aut(N) won’t respect the quotient classes. I.e., we need

that γ(x) = γ(x′) (as automorphisms) when g(x) = g(x′). Back to the proof, we are given (i) that N ◁ G and (ii) we
know that Inn(N) ◁ Aut(N), and (iii) we have a homomorphism γ : G → Aut(N), and (iv) γ(N) = Inn(N) because

each n maps to the inner automorphism n → nn′n−1 (the map may not be injective, but that is fine). These are the

conditions for Prop 2.12. So we have an induced homomorphism f′ : G/N → Aut(N)/Inn(N) given by f′([x]) = [ϕ′x]

(where ϕ′x(n) ≡ xnx−1). However, Out(N) ≡ Aut(N)/Inn(N), so we have the homomorphism β = f′.

How do we interpret this? γ maps x ∈ G to the inner automorphism ϕg on G. This restricts to an automorphism of

N. Because Inn(N) is normal in Aut(N), ϕg|N = fϕ′n for some n ∈ N and f ∈ Aut(N) (of course, there are many

ways to choose the f, n pair). We thus have a map from each g to ϕg to the class of all f’s s.t. ϕg|N = fϕ′n for some

n. If we start with γ(n ∈ N) = ϕn then we get ϕn|N = IdNϕ′n along with many other fϕ′
n′ ’s. But these all sit in

[Inn(N)] = [e], since their class contains IdN = ϕ′e. So we have γ(N) ⊆ Inn(N). The resulting map takes each class of
G to the corresponding class of restricted (to N) inner automorphisms on G modulo actual inner automorphisms on N.

3 Exact Sequences

3.1 Definitions

An exact sequence is a sequence of homomorphisms between groups · · · → Gn
fn−→

Gn−1
fn−1−−−→ · · · where Im fn = ker fn−1 for every pair. Here are some basic properties:

• e → A
f−→ B · · · says f is injective.

• · · ·A f−→ B → e says f is surjective.
• e → A → B → e says A ≈ B.

A short exact sequence (SES) is an exact sequence of the form: e → A
f−→ B

g−→ C → e.
From now on, almost everything we discuss will involve SES’s.

• For an SES, f is injective, g is surjective, and Im f = ker g.

• Prop 3.1: Given an SES, (i) f(A) is normal in B, (ii) C ≈ B/f(A) is a group,
and (iii) there is an isomorphism α : B/f(A) → C given by α([x]) ≡ g(x) (which is
well-defined).
Pf: This immediately follows from the first isomorphism thm applied to the groups at hand. g is a surjective homomor-
phism, so ker g is normal in B and C ≈ B/f(A) is a group. Since ker g = Im f, f(A) is normal in B. Likewise, α is the
natural isomorphism discussed earlier.

•

Because A is injective, it is common to just refer to A rather than f(A) as the subgroup of B. In that case, the choice
of f is implicit but important. Though in many cases, there is a natural choice (such as an inclusion when A truly *is* a
subgroup of B), it is quite possible that there exists more than one subgroup of B isomorphic to A. In that case, differ-
ent f’s would give different SES’s. As we will see, these correspond to distinct group extensions.

• SES’s arise all the time when dealing with groups, and the critical question is whether
they “split”.
As suggested in Prop 3.1 and developed below, an SES embodies a normal/quotient relationship between groups (with a
little extra sugar). The most general form of this is a group extension. If the SES right-splits we get a semidirect prod-
uct, and if it left-splits we get the direct sum.

•
Note that sometimes the e’s (or 0’s or 1’s) are omitted from the ends of an SES. In that case, whether the expression is
indeed an SES should be clear from the context.

An SES is said to right-split if ∃ a homomorphism h : C → B such that g ◦ h = IdC .
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• Obviously, this implies h is injective.
Otherwise, two elements could map to the same b. g then would map them to the same c on round-trip, and g◦h ̸= IdC .

• I.e. we have a full copy of C inside B, which means C is (isomorphic to) a subgroup
of B.

–

Technically, C is isomorphic to a subgroup of B, but just as it is common to treat A (rather than f(A)) as a sub-
group of B for an SES in general, it is common to treat C (rather than h(C)) as a subgroup of B when the SES
right-splits. In this case, the choice of h is implicit. In a given case, there may be a natural choice of h. But if
not, distinct h’s will give rise to distinct ways of splitting the SES. As we will see, these correspond to distinct
semidirect products.

–

One way of thinking of this is as follows. g projects all of B to C. This is done in a manner compatible with the
quotient map q : B → B/f(A), producing the isomorphism α : B/f(A) → C we mentioned earlier (i.e. α([x]) =
g(x)). If the SES right-splits then we can reconstitute B/f(A) as a subgroup of B by picking one element from
each equivalence class via h ◦ α : B/f(a) → B.

–

Note that for *any* SES, we always can pick an element from each class of B/f(A) (and thus from α(B/f(a)) ∈
C). This produces an injective map B/f(A) → B. However, this map need not be a homomorphism. It may be
impossible to choose an element from each class in a way that respects the group structure on B/f(A) (and thus
on C). I.e., we can construct many injective maps h s.t. g◦h = IdC , but none of them need be a homomorphism.
If any are, the SES right-splits.

–

Given that every SES has the canonical isomorphism α : B/f(A) → C described above, why not just use α−1

to obtain a right-splitting map? α−1 takes us from C to B/f(A). The only way to go to B is if there is an in-
jective homomorphism B/f(A) → B to compose on this — which is precisely the case when the SES right-splits.
The freedom to pick that injective homomorphism is the freedom in the right-splitting map.

• If an SES right-splits, there may be more than one way to do so. “right-splitting”
(i.e. whether any suitable homomorphism h exists) is a property of the SES, but a
specific “right-split” SES involves a choice of h.

An SES is said to left-split if ∃ a homomorphism h : B → A such that h ◦ f = IdA.

• Obviously, this implies h is surjective.

•

We always can move from A to B and back without losing info, because f is an injective homomorphism. However, this

only applies to the round-trip through Im f ⊆ B. We have no way of projecting all of B to A, since f−1 is not defined
on all of B. h fills this gap. Its domain is all of B, not just Im f. Also, it is surjective (otherwise, it couldn’t compose

to produce IdA). I.e., if we write it as B
h−−−−−⇀↽−−−−−
f

A, this looks like the right-half of a right-split SES. We’re projecting

B to A in such a way that A looks like a quotient group. The presence of h gives us the ability to do so.

•

Another way to phrase this is that f−1 is defined only on f(A), and h extends it to a homomorphism from all of B to

A. I.e., the SES left-splits iff f−1 extends (as a homomorphism) to all of B. Equivalently, the SES left-splits iff ∃ a ho-

momorphism B → A that restricts to f−1 on f(A).

• As with right-splitting, left-splitting (i.e. whether any suitable h exists) is a property
of the SES, but a specific left-split SES involves a choice of h.
However, in the case of left-splitting, the choice of h is far less meaningful. As we will see, this is because it is such a
strict condition. A left-split SES corresponds to a direct sum of groups and this is a unique construction.

• Left-splitting is a far stronger constraint than right-splitting, and in fact implies it.
The directionality of the homomorphisms in the SES introduces this asymmetry of information content.

If the groups are abelian, the converse holds too and right-splitting implies left-splitting.

• Another way to think of it is that a left-split SES can be reversed using the appropriate
h’s in place of f and g.

• Different people use the unadorned term “splitting” to refer to right-splitting or left-
splitting, so it is best to include the specific moniker.

3.2 Central Extensions

• Central Extension of C by A: An SES e → A
f−→ B

g−→ C → e for which f(A) ⊆
Z(B).
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– I.e., A injects into the center of B.
– This means f(A) is both abelian and normal in B.
– Note that sometimes A or f themselves are referred to as the “central extension”.

The reason for the nomenclature will become apparent later, when we equate SES’s with group extensions.

– This implies A itself is abelian.
Pf: A is isomorphic to f(A) since f is an injective homomorphism. However, f(A) ⊆ Z(B) is abelian. So any
group isomorphic to f(A) must be abelian as well.

– The converse need not hold. A can be abelian without being a central extension.
f(A) can commute with itself but fail to commute with the rest of B.

• Given any group C and any abelian group A, we always can construct a central
extension.
Pf: As we’ll discuss later, we always can build B = A ⊕ C. The inclusion is f : A → (A, e), which clearly is in Z(B).

This does not contradict our previous statement. Given C and abelian A, there may exist non-central-extension SES’s.
However, there always exists a central extension as well.

• Central extensions play a critical role in projective representations and quantum me-
chanics.
More on this another time, but here’s the gist. Quantum mechanics has a projective Hilbert space as its true state
space, but we mostly work in the far more tractable corresponding Hilbert space. One of the main reasons we can do
so is because the projective representations of a symmetry group G (i.e. the angle-preserving actions of G on projective

Hilbert space) can be ”lifted” to linear representations of a different group G′ on ordinary Hilbert space. Here, G′ is a
particular central extension of G, and it turns out to be the universal covering group of G in many cases. This is why we
care about representations of SU(2) and SU(2) × SU(2) rather than just those of SO(3) and SO(3, 1). It is where half-
integer spins come from.

3.3 Information Content in an SES

As we will see shortly, there are “internal” and “external” ways of understanding the re-
lationships between groups. In the internal view, an SES embodies the notion of normal
subgroup and corresponding quotient group. In the external view, an SES embodies a way
of combining two groups A and C into a third group B which setwise looks like A×C and
incorporates their multiplications in some fashion.

The basic relationships are embodied in the following propositions. First, let’s consider how
we can build an SES from a normal/quotient relation between groups N and G, possibly
along with attaching maps.

• Prop 3.2: Given group G and normal subgroup N ◁ G, there is an SES e → N
i−→

G
q−→ G/N → e.

Pf: i is injective and q is surjective automatically. ker q is all group elements mapping to the [e] class — which is (by
definition) N. So Im i = ker q.

• Prop 3.3: Given a group G, a normal subgroup N ◁G, and an attaching isomorphism

α : G/N → C, we have an SES e → N
i−→ G

α◦q−−→ C → e.
Pf: i remains unchanged (and thus injective). Since α is an isomorphism, q being surjective implies α ◦ q is as well. Also
since α is an isomorphism, ker (α ◦ q) = ker q = Im i.

• Prop 3.4: Given a group G, a normal subgroup N ◁G, and an attaching isomorphism

α : A → N , we have an SES e → A
i◦α−−→ G

q−→ G/N → e.
Pf: q remains unchanged (and thus surjective). Since α is an isomorphism, i◦α remains injective and Im (i◦α) = Im i =
ker q.

• Prop 3.5: Given a group G, a normal subgroup N ◁ G, and two attaching isomor-

phisms α : A → N and β : G/N → C, we have an SES e → A
i◦α−−→ G

β◦q−−→ C → e.
Pf: All the arguments from the previous two propositions hold here as well.

It follows that any homomorphism between two groups gives rise to an SES.
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• Prop 3.6: Given a surjective homomorphism g : B → C, we have an SES e →
ker g

i−→ B
g−→ C → e.

Pf: The First Isomorphism thm tells us ker g ◁ B, so we have a canonical SES e → ker g
i−→ B

q
−→ B/ker g → e. As

described above, we can attach C if we have an isomorphism α : B/ker g → C. The First Isomorphism thm also tells us
that α([x]) = g(x) (for x ∈ G) is such an isomorphism and is well-defined (i.e., independent of the choice of x within an
equivalence class). It is clear that α ◦ q = g, so the SES is that stated.

– Sometimes an SES is written e → A −→ B
g−→ C → e. Typically, what is meant

here (if we know that it is in fact intended as an SES) is that A = ker g and f = i
(inclusion). I.e. it is a form of the surjective homomorphism SES. Alternatively,
it could mean that A ≈ ker g and the attaching isomorphism f is implicit. It is
best to avoid using such potentially-ambiguous expressions.

• Prop 3.7: Given any homomorphism g : B → C, we have an SES. It is given by

e → ker g
i−→ B

g−→ f(C) → e.
Pf: Relative to g(C), g is surjective so we have the case in Prop 3.6.

I.e., given a normal/quotient relationship between G and N , we have a canonical SES as
well as the ability to construct a variety of related SES’s via attaching maps. Specifically,
given any groups A ≈ N and C ≈ G/N , along with any specific isomorphisms for those, we
obtain derivative SES’s as described.

Next, let’s go in the opposite direction and consider what an SES says about the relationship
between groups.

• Prop 3.8: Given an SES e → A
f−→ B

g−→ C → e, f(A) ◁ B and C ≈ B/f(A).
Pf: In an SES, g is a surjective homomorphism so the First Homomorphism thm tells us that ker g ◁B and C ≈ B/ker g.
However, ker g = Im f in an SES, so f(A) ◁ B and C ≈ B/f(A).

• Prop 3.9: Given an SES, e → A
f−→ B

g−→ C → e, we have the following related SES’s:

– (i) e → f(A)
i−→ B

q−→ B/f(A) → e (where i and q are the inclusion and quotient
maps)

– (ii) e → A
f−→ B

q−→ B/f(A) → e

– (iii) e → f(A)
i−→ B

g−→ C → e.

–
Pf: (i) f(A) ◁ B, so we have a canonical SES for it. (ii) f is an attaching isomorphism from A to f(A), so we get
the 2nd SES. (iii) g is a surjective homomorphism with ker g = Im f so we get the 3rd SES.

– We’ll refer to these collectively as the derived SES’s of e → A
f−→ B

g−→ C → e
and to (i) as the core normal/quotient SES.

From these, it is evident that a general SES is tantamount to its core normal/quotient
relationship plus two attaching isomorphisms.

The next obvious question to ask is which SES’s are materially distinct, where “materially”
remains to be defined. To do so, we must introduce notions of equivalent and isomorphic
SES’s.

3.4 SES Morphisms, Equivalence, and Isomorphism

The first thing we must develop is a notion of a structure-preserving map between two SES’s.
I.e., a morphism.
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• Morphism between SES’s: Given SES e → A
f−→ B

g−→ C → e and SES e → A′ f ′−→
B′ g′−→ C ′ → e, a morphism h between them consists of three group homomorphisms
ha : A → A′, hb : B → B′, and hc : C → C ′ s.t. hb ◦ f = f ′ ◦ ha and hc ◦ g = g′ ◦ hb.

– I.e., the following diagram must commute:

e A B C e

e A′ B′ C ′ e

f

ha

g

hb hc

f ′ g′

– We’ll collectively refer to the morphism maps (ha, hb, hc) as h.

When it comes to groups, we typically only care about isomorphism classes. If two groups
are isomorphic they are viewed as “the same” for most purposes. With SES’s things are a bit
more complicated. They are compound structures with several moving parts. It turns out
there are three key distinct notions of SES’s looking the same. These are plain old equality
(i.e. A = A′, B = B′, C = C ′, f = f ′, and g = g′), SES-isomorphism, and SES-equivalence.

SES-isomorphism and SES-equivalence embody what we mean by SES’s being “materially”
identical. Which of them we care about depends on the specific application, much as whether
we care about true equality or isomorphism of groups does. Let’s begin with the weaker of
the two: the notion of isomorphism.

• Isomorphic SES’s: There exist SES-morphisms h, h′ which are inverses.

– This trivially is equivalent to the requirement that there exists an SES-morphism
h s.t. ha, hb, and hc are group isomorphisms.

– Note that it is not sufficient that A ≈ A′ and B ≈ B′ and C ≈ C ′ alone. There
must exist specific isomorphisms that also make the diagram commute:

e A B C e

e A′ B′ C ′ e

f

ha

g

hb hc

f ′ g′

– Note that given isomorphisms ha, hb, and hc which do satisfy the commutativity
in one direction, their inverses automatically will in the other. So if we have a
morphism of SES’s and the component homomorphisms are isomorphisms, we
have an isomorphism of SES’s.

– An SES-isomorphism basically says that if we can build B from A and C a certain
way then we can build B′ from A′ and C ′ in an analogous way using the h maps.

– We’re now in a position to understand the term “series-equivalent” mentioned
earlier.

*

Recall that two isomorphic normal subgroups of G are considered ”series-equivalent” if the corresponding
quotient groups are isomorphic as well. Series-equivalent basically says that B′ = B, A′ ≈ A and C′ ≈ C.
Note that series-equivalence does *not* guarantee SES-isomorphism. We still need specific isomorphisms
ha, hb, and hc which make the diagram commute. We mentioned that isomorphism of normal subgroups
implies isomorphism of the corresponding quotient groups when the normal isomorphism extends to an au-
tomorphism on B (or G in our earlier notation). However, we also mentioned that this is a sufficient but
not necessary condition. It is precisely the cases for which the quotient *is* isomorphic but there is no au-
tomorphism of G which restricts to an isomorphism N → N′ where SES-isomorphism fails. I.e., ”series-
equivalent non-automorphic” is tantamount to SES-non-isomorphic (when N ≈ N′ and G/N ≈ G/N′).

*
Note that even though B = B′, we need not assume hb = IdB . It can be any element of Aut(B).

* Prop 3.10: Given group G and two series-equivalent normal subgroups
(i.e.N ≈ N ′ andG/N ≈ G/N ′), the corresponding SES’s are SES-isomorphic
iff there exists an isomorphism N → N ′ which extends to an automorphism
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on all of G.
Pf: Suppose that N and N′ are series-equivalent, and let’s consider the implications for their canonical

normal/quotient SES’s e → N
i−→ G

q
−→ G/N → e and e → N′ i′−−→ G

q′
−−→ G/N′ → e. We have

N ≈ N′ and G/N ≈ G/N′. For the two SES’s to be isomorphic, we need an hn, hg , and hq s.t. (i) hg ◦
i = i′ ◦ hn and (ii) hq ◦ q = q′ ◦ hg . The first condition can be rewritten hg|N = hn (i.e., given x ∈ N,
we need hg(x) = hn(x)). I.e., hg restricts to hn on N. Put another way, we require the existence of an

isomorphism hn : N → N′ which extends to an automorphism hg on all of G. It turns out that (ii) always

can be satisfied when this is the case. To avoid confusion, we’ll denote the classes of G/N′ as []′ where

needed. We can define hq([x]) ≡ q′ ◦ hg(x). First, let’s show this is well-defined. Pick x′ ∈ [x]. It can be

written x′ = xn for some n ∈ N. hq([x′]) = hq([x]) since [x′] = [x]. On the right, hg(x′) = hg(xn) =

hg(x)hg(n). But hg(n) = hn(n) ∈ N′ since hg|N = hn. Therefore, hg(xn) = hg(x)n′ for some n′ ∈ N′.
This means q′(hg(x)n′) = [hg(x)]′ = q′(hg(x)). So it is well-defined. Note that it would *not* be well-

defined for a general hg , because hg(n) may not map to an element of N′ in that case. Only because hg

restricts to hn on N does this work! hq is a homomorphism because hq([e]) = q′ ◦ hg(e) = q′ ◦ e = [e]′

and hq([xy]) = q′(hg(xy)) = q′(hg(x)hg(y)) = q′(hg(x))q′(hg(y)) = hq([x])hq([y]). It is injective

because ker hq consists of all classes [x] s.t. q′ ◦ hg(x) = [e]′. I.e. hg(x) ∈ N′. But this just means

x ∈ h−1
a (N′) (again because hg|N = ha and both are isomorphisms), so x ∈ N. I.e., ker hq = [e] and hq

is injective. Given [y]′ ∈ G/N′, is there a [x] ∈ G/N s.t. hq([x]) = [y]′? We need q′ ◦ hg(x) = [y]′, which

means hg(x) = yn′ for some n′ ∈ N′. We may as well pick n′ = e, so hg(x) = y. But both x, y ∈ G and

hg is an isomorphism, so we can invert it. I.e., pick x = h−1
g (y) (map inverse, not multiplicative inverse).

hq therefore is surjective as well. hq is a bijective homomorphism and thus an isomorphism.

* I.e., if N and N ′ are series-equivalent then their canonical normal/quotient
SES’s are isomorphic iff there exists an isomorphism N → N ′ which extends
to an automorphism on G.
Why iff when we said it was a sufficient but not necessary condition? We must be careful what we are
talking about. Given N ≈ N′, the existence of an hn which extends to hg is a sufficient condition for

G/N ≈ G/N′ (i.e. for series-equivalence). Given series-equivalence (i.e. N ≈ N′ *and* G/N ≈ G/N′),
this same condition is both necessary and sufficient for SES-isomorphism. However, given N ≈ N′ it is
perfectly possible to have G/N ≈ G/N′ (i.e. series-equivalence) without SES-isomorphism. This can
happen iff there is no hn which extends to an hg . Otherwise, we would have SES-isomorphism as well.
Of course, in most cases where there is no hn which extends to an hg we have neither SES-isomorphism

nor series-equivalence. More formally, let X be the statement ”N ≈ N′”, let Y be ”series-equivalence”
(i.e. N ≈ N′ and G/N ≈ G/N′), let Z be ”isomorphism of the corresponding SES’s”, and let C be the

condition that ”there exists some isomorphism N → N′ which extends to an automorphism on G”. Then
X ∩ C ⇔ Z and Z ⇒ Y (and thus X ∩ C ⇒ Y ). Obviously, Y ⇒ X too (by its definition). However,
Y ⇏ C and Y ⇏ Z.

*
The notion of ”series-equivalent” should not be confused with the similar-sounding ”equivalent SES’s” we
define below.

The next stricter notion of “sameness” is SES-equivalence.

• Equivalent SES’s: A = A′ and C = C ′ and there exists an SES morphism h s.t.
ha = IdA and hc = IdC .

–

Note that equivalence is not a vacuous concept. It is perfectly possible to have non-equivalent SES’s with A = A′
and C = C′ and ha = IdA and hb = IdB . To be SES-equivalent, we need an hb which embodies both the

difference between f and f′ and the difference between g and g′.

– Diagramatically, we require the following to commute:

e A B C e

e A B′ C e

f

IdA

g

hb IdC

f ′ g′

– Put simply, we’re changing only f, g,B between the two SES’s and we have a
compatible isomorphism hb.

– The commutativity requirements can be written f ′ = hb ◦ f and g = g′ ◦ hb.

– Prop 3.11: SES-equivalence implies SES-isomorphism.
Pf: SES-equivalence is a particular SES-isomorphism.

–

Note that it is perfectly possible to have non-equivalent SES’s with B = B′. To be SES-equivalent, hb must

be an automorphism that embodies both the difference between f and f′ and the difference between g and g′.
For example, if B has distinct isomorphic normal subgroups (i.e. f(A) and f′(A)) but no automorphism on B

restricts to an isomorphism between them, there could be SES’s e → A
f
−→ B

g
−→ C → e and e → A

f′
−−→ B

g′
−−→

C → e which not only are non-equivalent but are non-isomorphic. In that case, they would be series-equivalent
non-automorphic, as discussed earlier.

Let’s consider the difference between SES-equivalence and SES-isomorphism a bit.
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• We’ve seen that the property of SES-equivalence implies the property of SES-isomorphism.
The former is defined only when A = A′, C = C ′, so it is natural to ask whether un-
der those circumstances the converse holds too. I.e., when A = A′ and C = C ′ is
SES-equivalence the same as SES-isomorphism? The answer is no. We can have an
SES-isomorphism which is not an SES-equivalence.

–

This is not as vacuous a question as it may seem at first glance. SES-isomorphism as a property (as opposed
to a specific choice of SES-isomorphism) requires the existence of group isomorphisms ha, hb, and hc s.t. the
diagram commutes, while SES-equivalence as a property requires the existence of an SES-isomorphism with
ha = IdA and hb = IdB . Obviously, a general SES-isomorphism is not an SES-equivalence, even if

A = A′ and B = B′. However, it is quite possible that if any SES-isomorphism exists (i.e. the property
of SES-isomorphism holds) we always can obtain an SES-equivalence through some sort of machination (i.e.

the property of SES-equivalence holds). Obviously, this would involve some other h′b, presumably derived from
ha, hb, and hc. It turns out this is not possible in general. See https://math.stackexchange.com/questions/351581/

equivalences-and-isomorphisms-of-short-exact-sequences for a discussion of this.

– However, this converse does hold under certain circumstances, as the following
proposition makes clear.

– Prop 3.12: Given an SES-isomorphism h, there is an SES-equivalence iff ∃k ∈
Aut(B) that simultaneously extends ha (i.e. k|f(A) = ha) and lifts hc (i.e. g ◦k =
hc).
Pf: This literally is just a restatement of the commutativity requirement.

There are some unintuitive aspects to SES-equivalence and SES-isomorphism, so let’s con-
sider a few questions (several of which differ subtly).

•

Warning: some authors use the word ”equivalence” to refer to SES-isomorphism rather than SES-equivalence. These au-
thors tend to not bother with defining the notion of SES-equivalence at all. This is not entirely unreasonable since we
almost always are interested in SES-isomorphism classes rather than SES-equivalence classes. However, the fact that dif-
ferent authors use different conventions can lead to confusion — so care must be taken when encountering this term.

• Consider a general SES e → A
f−→ B

g−→ C → e. Can A′ ≈ A and B′ ≈ B and C ′ ≈ C
but there exist no isomorphic SES with A′, B′, and C ′? No, we always can build one.

–

As before, this is not a vacuous question. We know that a given pair of SES’s need not be SES-isomorphic even if
A ≈ A′ and B ≈ B′ and C ≈ C′. There may simply be no choice of h which makes the diagram commute. But
now we are asking whether we can find *any* SES involving A′, B′, and C′ (in that order) which works. I.e., we

have the freedom to pick f′ and g′.

–

Pf: Since we know the three pairs of groups are isomorphic, let’s choose some set of isomorphisms ha, hb, and

hc. We define f′ ≡ hb ◦ f ◦ h−1
a and g′ ≡ hc ◦ g ◦ h

−1
b

. This forces the diagram to commute. Moreover, f′

is injective and g′ is surjective. This is because the composition of injective (surjective) maps is injective (sur-

jective), and any isomorphism is both injective and surjective. They also satisfy ker g′ = Im f′. To see this,

note that ker hc = {e} and ker hc ◦ g = ker g. So ker g′ = (h
−1
b

)−1(ker g) = hb(ker g). On the other end,

Im f′ = hb(f(h−1
a )(A′)). We therefore need hb(ker g) = hb(f(h−1

a (A′))). Since hb is an isomorphism, we can

compose h
−1
b

on the left to get ker g = f(h−1
a (A′)). But h−1

a (A′) = A since h−1
a is surjective. So we need

ker g = Im f, which have from the first SES.

–
I.e., not only is there always an isomorphic SES, but for any given choice of specific isomorphisms ha, hb, and hc
we can find one.

–

Why not use this to solve the series-equivalent issue mentioned earlier? We have N ≈ N′ and G/N ≈ G/N′, so
can’t we just find an SES which is isomorphic — thus violating our earlier statement that this may not be pos-
sible? We have to be careful what precisely we are asking. In that case, we were dealing with normal/quotient
SES’s which have specific inclusion and quotient homomorphisms as part of their structure. We therefore did not
have the freedom to pick f′ and g′. If we ask whether there is *some* SES with N′ ≈ N and G/N′ ≈ G/N (and

the same G) that is isomorphic, then the answer is yes. However it won’t have i′ and q′ as its homomorphisms.
In the series-equivalent non-automorphic case, it is impossible to find an hn, hg , and hq which would lead to

f′ = i′ and g′ = q′ via the method just described.

–

In a similar vein, why doesn’t this give us an avenue to show the converse involving SES-equivalence? Suppose
A′ = A and C′ = C and we have an SES-isomorphism. Can’t we just pick ha = IdA and hc = IdC and then

find an f′ and g′ which give us an SES-equivalence? Sure. In fact, we don’t even need to start with an SES-
isomorphism. Given any SES and any B′ ≈ B and hb, we can find an SES-equivalent SES. We never claimed
we couldn’t. After all, we’re allowing ourselves freedom to pick any SES. It’s only when we’re confined to consid-
ering two specific SES’s that it may be impossible to find a specific hb.

• Now consider a normal/quotient SES e → N
i−→ G

q−→ G/N → e. Can G ≈ G′ and
N ≈ N ′ and G/N ≈ G′/N ′ but there exist no isomorphic normal/quotient SES with
N ′ and G′? Surprisingly, the answer is yes.
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–

The key difference from the previous case is that we have no attaching homomorphisms. I.e., we have no free-
dom to pick f′ and g′ because they are the inclusion and quotient maps. All we can pick are hn, hg , and hq
(i.e. ha, hb, and hc adapted to our current notation). The essential problem is analogous to the one discussed

earlier for series-equivalent normal subgroups (though in that case, G = G′). The first commutativity require-

ment is i′ ◦ hn = hg ◦ i. I.e., hn = hg|N . This can be satisfied iff ∃ an isomorphism hg which restricts to

an isomorphism between N ◁ G and N′ ◁ G′. Any hg induces an isomorphism between N and *some* normal

subgroup of G′. However, for a particular choice of N′ there may be no hg which takes N to it. The second com-

mutativity requirement is hq ◦ q = q′ ◦ hg . For a given hg and hq , there is no guarantee that hg ”lifts” classes

of G to classes of G′. I.e., that it is compatible with q′. If it does, then hq is the lift. Since we have locked down

G′/N′, we need the existence of an hg which lifts classes.

–

How do we reconcile this with our previous result, given our claim that f and g are just attaching maps? Well,
we never said they were *just* attaching maps. They’re attaching maps plus some. Specifically, f incorporates
the choice of normal subgroup N = f(A). The freedom to choose f′ and g′ allows us to pick N′ = f′(A′) as
well. The equivalent question in our current internal language would be whether we always can find some suit-
able N′ and hn, hg , and hq . That extra flexibility *does* admit a solution.

• What if we also require G = G′ (instead of just G ≈ G′)? Can N ′ ≈ N and G′ = G
and G/N ′ ≈ G/N but there exist no SES-isomorphic SES with N ′? The answer still
is yes.

–
Note that G = G′ does *not* imply hg = IdG. We are free to pick *any* element of Aut(G) which works.

–
The condition now is that hn = hg|N and hg takes classes of G/N to classes of G/N′. There may or may not
exist such an automorphism hg .

–

We’re now dealing with precisely the series-equivalent case from earlier. As mentioned, there are situations in
which N ≈ N′ and G/N ≈ G/N′ but no there is no automorphism on G which restricts an an isomorphism

between N and N′. I.e., there is no compatible hn and hg .

– Even if N and G/N (and thus N′ and G/N′) are abelian, there still exist such cases.

– See https://groupprops.subwiki.org/wiki/Series-equivalent_not_implies_automorphic for a table of such situations.

• Let’s look at a more extreme example. Consider two SES’s with the same A, B,
and C. I.e., they have the same groups, not just isomorphic groups. All that differs
between them is f and g. Does this guarantee that the SES’s are SES-equivalent?
No. In fact, they needn’t even be SES-isomorphic. If just f = f ′ or g = g′, we have
an SES-isomorphism, but not necessarily an SES-equivalence.

The case with both f ̸= f′ and g ̸= g′ is just what we discussed earlier. If e → A
f
−→ B

g
−→ C → e and e → A

f′
−−→

B
g′
−−→ C → e are SES-isomorphic there exists isomorphisms ha, hb, and hc which make the diagram commute. In our

case, these are automorphisms of A, B, and C. For the same reason compatible isomorphisms ha, hb, and hc may not

exist in the A ≈ A′, B ≈ B′, C ≈ C′ case discussed above, compatible automorphisms may not exist when A = A′,
B = B′, and C = C′. Perhaps an easier way to see this is is via the core normal/quotient relations. Two SES’s with the

same A, B, and C may have distinct normal-quotient relations. If f(A) ̸= f′(A), then there are different normal copies

of A inside B, and distinct corresponding normal/quotient relations. What if f = f′? We have the same quotient group

(which depends only on f(A)), but two distinct canonical isomorphisms α and α′ from B/f(A) to C (induced from g

and g′ by the First Isomorphism thm). Any two isomorphisms between B/f(A) and C are related by an automorphism

of B/f(A) (or, equivalently, an automorphism of C). We therefore do have an automorphism of C which takes g to g′.
Using ha = IdA and hb = IdB and this automorphism α ◦ α′−1 as hc, we have an SES-isomorphism. However, since

hc ̸= IdC (unless the two SES’s are equal), there is no SES-equivalence. If instead, g = g′, then ker g = ker g′. Since

ker g = f(A) and ker g′ = f′(A) by the SES exactness relations, f(A) = f′(A) and we have the same quotient group.

But f and f′ both are isomorphisms to f(A), so by the same reasoning as before, f ◦ f′−1 is an automorphism of f(A).

We therefore have an SES-isomorphism given by ha = f ◦ f′−1, hb = IdB , and hc = IdC .

• Now consider a different question. Suppose we have a normal/quotient SES e →
N

i−→ G
q−→ G/N → e and a specific automorphism hn : N → N . Is there an SES-

automorphism (i.e. an SES-isomorphism from the SES to itself) involving hn? The
answer is no.

–

Obviously, any SES is SES-equivalent to itself. We’re asking a different question: whether we can pick a suitable
hg and hq s.t. i ◦ hn = hg ◦ i (i.e. hg|N = hn) and q ◦ hg = hq ◦ q (i.e. hq([x]) = [hg(x)], where we don’t need

[]′ notation since the equivalence classes are the same since N is the same in both cases). We still have the usual
automorphism-restriction problem. Unless there exists an automorphism on G which restricts to the automor-
phism hn on N, we don’t have an SES-automorphism. The same issue arises if we fix hq or hg and ask whether
we can pick the other two isomorphisms to create an SES-automorphism.

• Can two SES’s have the same A and C but distinct (i.e. non-isomorphic) B’s? They
sure can.
As a simple example, B = A ⊕ C always exists and is unique. If there is any non-trivial extension B′ of A by C then it
can’t be isomorphic to B.
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• Suppose A ̸≈ A′ or C ̸≈ C ′. Obviously, any SES’s involving these would be non-
isomorphic, but is it possible that we’ll get the same B despite this? I.e., can we build
the same B from different pairs of groups? The answer is yes.

–

As a purely semantic point, whether we require B = B′ or accept B ≈ B′ depends on whether we take the in-
ternal or external view. If we’re building B from distinct building blocks then obviously we can’t formally have
B = B′ since there is no canonical identification of points in A× C with those in A′ × C′. However, in the inter-
nal view we obviously can. And from the standpoint of SES’s we obviously can. We haven’t defined these terms
yet, so this is something to keep in mind for when we do.

–

As an example consider B ≡ B1 ⊕ B2 ⊕ B3, the direct sum of three distinct (non-isomorphic) groups. We can
write B = (B1 ⊕ B2) ⊕ B3 (i.e. A = (B1 ⊕ B2) and C = B3) or B = B1 ⊕ (B2 ⊕ B3) (i.e. A = B1 and
C = B2 ⊕ B3). These are non-isomorphic SES’s which produce the same B. As an even simpler example, we can
write B = A ⊕ C and B = C ⊕ A and these are non-isomorphic SES’s (assuming A ̸≈ C, of course).

Let’s next consider the relationship between an SES and the derived SES’s mentioned earlier.
Is an SES isomorphic to its derived SES’s? The answer is yes, as the following two results
show.

• Prop 3.13: An SES e → A
f−→ B

g−→ C → e is isomorphic to its derived SES’s.

–
Pf: (e → f(A)

i−→ B
g
−→ C → e): Pick ha = f, hb = IdB , and hc = IdC . Then IdB ◦ f = i ◦ f and

IdC ◦ g = g ◦ IdB .

–

Pf: (e → A
f
−→ B

q
−→ B/f(A) → e): Pick ha = IdA and hb = B. For hc we use α−1, where α is the canonical

isomorphism α : B/f(A) → C from the First Isomorphism thm (given by α([x]) ≡ g(x), and which is guaranteed

to be well-defined). I.e., α ◦ q = g. IdB ◦ f = f ◦ IdA and α−1 ◦ g = q ◦ IdB . To see the latter, note that

α−1 ◦ g = α−1 ◦ α ◦ q = q.

–

Pf: (e → f(A)
i−→ B

q
−→ B/f(A) → e): We combine the two. ha = f, hb = IdB , and hc = α−1. Then

IdB ◦ f = i ◦ f and α−1 ◦ g = q ◦ IdB just as before.

• Prop 3.14: If two SES’s e → A
f−→ B

g−→ C → e and e → A′ f ′−→ B′ g′−→ C ′ → e be
isomorphic, then their derived SES’s all are isomorphic to one another as well.

–

Pf: SES-isomorphism is a transitive property. We know that each SES is isomorphic to all its derivative SES’s
and the two SES’s are isomorphic, so every pair of SES’s involved has to be isomorphic. I.e., they’re all in the
same isomorphism class.

– In terminology we have yet to introduce, the internal and external views look the
same.
But once again note that e → A

f
−→ B

g
−→ C → e allows us freedom to pick N via the choice of f. We are *not*

saying the information content is identical!

– Put another way, all SES’s that have the same core normal/quotient relationship
are isomorphic.
However, the converse is not true. Every isomorphism class need not have a unique core normal/quotient SES. As
we have seen, it is quite possible for two distinct normal/quotient SES’s to be isomorphic. Put another way, the
partition of SES’s by core normal/quotient relationship is a refinement of the partition by isomorphism class.

Finally, let’s consider SES-automorphisms.

• SES-automorphism: An SES-isomorphism from an SES to itself. I.e. A, B, C, f ,
and g all are the same.

– An SES-automorphism requires automorphisms ha, hb, and hc s.t. f ◦ha = hb ◦f
and hc ◦ g = g ◦ hb.

– Not every set of automorphisms h = (ha, hb, hc) has these properties. Even for
a given hb there may be no ha and hc which work. Nor need there exist any
hb ̸= IdB for which a suitable ha and hb exist. I.e., a given SES may have no
SES-automorphisms (other than identity).
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– We lose no generality studying SES-automorphisms of a core normal/quotient
SES. In that case, we need the following diagram to commute (where our auto-
morphism is h = (hn, hg, hq)).

e N B G/N e

e N G G/N e

i

hn

q

hg hq

i q

–

I.e., we need i ◦ hn = hg ◦ i and hq ◦ q = q ◦ hg . Since i just is subset inclusion here, the first constraint can
be read hn(n) = hg(n). For a given hg , this means hn = hg|N . The second constraint tells us that hq([x]) =
[hg(x)], which means hg must be compatible with the quotient classes. I.e., it must move quotient classes into
quotient classes (though it can rearrange elements within each quotient class as well). Moreover, it must do so in
a manner compatible with the behavior of group G/N (since hq is an isomorphism). hq then is determined from
hg as well. However, not every automorphism hg has these properties. Once again, we come back to the issue
that an automorphism on G need restrict to an automorphism on N nor lift an automorphism on G/N.

–

But wait, can’t we just pick an hn and hq and pretend they are attaching isomorphisms where A happens to be
N and C happens to be G/N? We saw that as long as f(A) is unchanged the attaching isomorphisms won’t af-

fect the core normal/quotient relationship. Well, that’s true. The new SES is e → N
hn−−−→ G

hq◦q
−−−−→ G/N → e

in that case. This *is* SES-isomorphic to e → N
i−→ G

q
−→ G/N → e, but in a trivial way. The SES-isomorphism

is just (h−1
n , IdG, hq), which trivially satisfies our isomorphism constraints since h−1

n ◦ hn = IdB ◦ i = IdN
and hq ◦ q = hq ◦ q ◦ IdB . This simply tells us that, sure, we can unwind our pointless attaching maps via an
SES-isomorphism. We still haven’t found an hb which creates an SES-automorphism, however.

– If we have an SES-auto-equivalence (i.e. a specific SES-equivalence hb from an
SES to itself), this is an SES-automorphism, of course. However, not every SES-
automorphism is an SES-auto-equivalence.
An SES-auto-equivalence requires that hb|N = IdN and that hb only moves elements within each quotient class
but leaves the quotient classes alone.

4 Isomorphisms and Splitting

We defined right-splitting and left-splitting as properties of an SES. We also mentioned that
there may be more than one way to right-split an SES, and these can be materially different
(as we will see, they lead to distinct semidirect products). Let’s now consider whether
splitting is an isomorphism-class property.

• Prop 4.1: If e → A
f−→ B

g−→ C → e right-splits, C is isomorphic to a subgroup of B.
Pf: We have an injective f, surjective g, Im f = ker g, and (necessarily injective) h : C → B s.t. g ◦ h = IdC . Because
g respects quotient-classes, h picks out a single element of each class. If it picked two from the same class, g would map
them to the same element of C and we wouldn’t get IdC on the round-trip. Since h is an injective homomorphism C →
B, it is an isomorphism C → h(C). Therefore, C ≈ h(C) ⊂ B.

• Prop 4.2: If e → A
f−→ B

g−→ C → e left-splits, C is isomorphic to a normal subgroup
of B.
Pf: We have an injective f, surjective g, Im f = ker g, and (necessarily surjective) h : B → A s.t. h ◦ f = IdA.
We already have the isomorphism α : B/f(A) → C given by α([x]) ≡ g(x) (which is well-defined since g is class-
respecting). In general, we can’t invert g (it’s many-to-one), and we can’t lift B/f(A) to a subgroup of B by picking an
element of each class which respects the group structure. However, we now have h to work with too. h is a surjective
homomorphism, and thus has its own normal/quotient relation. Specifically, ker h ◁ B and A ≈ B/ker h. However,
ker h is precisely the choice we are looking for. It picks a unique representative of each B/f(A) class *and* constitutes
a subgroup of B. How do we know it picks a unique rep? [Note: from now on in the proof, when we speak of quotient
we mean B/f(A) (as opposed to B/ker h), q is the corresponding quotient homomorphism, and ”classes” refer to the
elements of B/f(A) as indexed by C.] We want to show that q|ker h is bijective. Since h ◦ f = IdA, h must restrict to

the isomorphism f−1 : f(A) → A on f(A). However f(A) is just the class [e] in B/f(A). Consider a class [x] ̸= [e].
The elements of [x] are given by xf(A) for some x /∈ f(A) (obviously, there are many ways to choose this x). h is a

homomorphism, so it must map xf(a) to h(x)h(f(a)) = h(x)a. There is a unique a = h(x)−1 for which h(xf(a)) =

e. I.e., xf(h(x)−1) ∈ B is mapped by h to e. If we chose some other x′ ∈ [x] instead, we would get x′f(h(x′)−1).

However, since they are in the same class, x′ = xf(a′) for some a′ ∈ A. We therefore have xf(a′)f(h(xf(a′))−1) =

xf(a′)f(h(f(a′)−1x−1)) = xf(a′)f(h(f(a′)−1))f(h(x−1)). But h ◦ f = Ida, so h(f(a′−1)) = a′−1 and we have

xf(a′)f(a′−1)f(h(x−1)) = xf(h(x−1)). I.e., we get the same element of B. There is a unique element of each class

which maps to e under h. We can use this to define a homomorphism β : B/f(A) → B given by β([x]) = xf(h(x−1)),
which as we just saw is the same for every x in the class. We thus have shown that C is isomorphic to a subgroup of B.
That subgroup is ker h, which is normal in B.
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• Prop 4.3: Left-splitting implies right-splitting.
Pf: In the proof of Prop 4.2 we exhibited a homomorphism β : B/f(A) → B given by β([x]) = xf(h(x−1)) (and which
we saw is well-defined on classes), where h : B → A is our left-split homomorphism. We define a right-split homomor-

phism h′ : C → B via h′ ≡ β ◦ α−1 (where α([x]) ≡ g(x) as usual). By construction, this satisfies g ◦ h′ = IdC . It also

is easy to see that h′(C) = ker h.

• Prop 4.4: Given a right-splitting SES e → A
f−→ B

g−→ C → e and right-split map
k (with K ≡ Im k ⊂ B), we have (i) K ≈ B/f(A), (ii) K ∩ f(A) = {e}, and (iii)
q|K = k−1 is an isomorphism K → G/N .
Pf: We lose no generality working with a core normal/quotient SES. Since k is an injective homomorphism G/N → G, it
is an isomorphism G/N → K. This proves (i). Since we have an SES, ker q = N. Suppose there exists x ∈ N ∩ K with
x ̸= e. Since x ∈ N, q(x) = [e]. Since x ∈ Im k, we know x = k([y]) for some [y]. Moreover, [y] ̸= [e] because k([e]) = e.
For a right-split map, q ◦ k = IdG/N . So we need q(k([y])) = [y]. But q(k([y])) = q(x) = [e]. So we need x = e, which

violates our assumption. This proves (ii). To see (iii), consider q ◦ k = IdG/N . I.e. q|K ◦ k = IdG/N . There can be

only one inverse map to the isomorphism k : G/N → K, so this must be q|K .

As a result, Prop 2.4 applies, and all the results of Prop 2.3 hold.

• Prop 4.5: Given any right-splitting SES e → A
f−→ B

g−→ C → e, there can be only
one right-split map to a given suitable subgroup K ⊂ B. This is k ≡ (g|K)−1.

– ”Suitable” here means K ≈ B/f(A) and f(A) ∩K = {e}. It is necessary, but not sufficient.

– I.e., if Im k = Im k′ then k = k′. We cannot have two distinct ways to right-split an SES to the same K.

–

Pf: This follows from Prop 4.4, but we’ll show it directly. g ◦ k = g|Im k ◦ k = IdC . But g|
Im k′ ◦ k′ = IdC

too. g|Im k is an isomorphism Im k → C and g|
Im k′ is an isomorphism Im k′ → C. If Im k = Im k′ then k and

k′ both would be inverses of the same g|K , so k = k′. Obviously, if Im k ̸= Im k′ then they can differ. However,

they still must be the same on the overlap region Im k ∩ Im k′.

–

Note that we are *not* saying that the SES right-splits to *every* subgroup K s.t. K ≈ B/f(A) and f(A) ∩K =
{e}. As we discussed in Prop 2.4, if B/f(A) is infinite it is quite possible to have K ≈ B/f(A) yet for q|K to
be isomorphic to a proper subgroup of B/f(A) rather than all of B/f(A). In that case, there would be no right-

split map to K because (q|K )−1(K) ⊂ K. I.e. (q ◦ (q|K )−1) ̸= IdK . Although no two elements of K sit in the
same coset, it is possible that there are cosets with no elements of K.

– We’ll refer to the subgroups of B to which a given SES right-splits as that SES’s
“right-split-groups”. Each is disjoint from f(A) and has qK as an isomorphism
K → B/f(A).

• Given an SES and two right-split-groups K and K ′, there may or may not exist
an SES-automorphism h that takes K to K ′ (i.e. with hb(K) = K ′). Since SES-
automorphisms compose, we have transitivity and thus an equivalence relation. I.e.,
this defines a partition of the right-split-groups of a given SES. We’ll term the classes
of that partition “RSG-classes”. I.e., right-split-groups K and K ′ are in the same
RSG-class of an SES iff an SES-automorphism moves us between them.

• Prop 4.6: Right-splitting is an SES-isomorphism-class property in the following sense:
(i) The property of right-splitting holds either for all members of an isomorphism class
or for none, (ii) under a given isomorphism, every right-split-group of one SES is in-
vertibly mapped to a corresponding right-split-group of the other SES, (iii) under a
given isomorphism, RSG-classes are invertibly mapped to RSG-classes, (iv) all isomor-
phisms between two isomorphic SES’s map RSG-classes in the same (invertible) way,
and therefore (v) we meaningfully may speak of the RSG-classes of an isomorphism
class of SES’s.
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–

Pf: Suppose we have an SES-isomorphism h between e → A
f
−→ B

g
−→ C → e and e → A′

f′
−−→ B′

g′
−−→

C′ → e and a choice of right-split-subgroup K ⊂ B. First, note that these are indeed SES’s. (qK )−1 ◦ q is a
homomorphism G → K which (as mentioned) takes each g to the unique element of K in its coset. It is surjective

because (qK )−1 ◦ q|K = IdK . Because (qK )−1 is injective, ker ((qK )−1 ◦ q) = ker q = N, and we have an
SES. The same argument holds for the other SES. Now to the proof. (i,ii) Since hb is an isomorphism, hb(K) is

a subgroup of B′. Moreover, an isomorphism is bijective, so hb(N ∩ K) = hb(N) ∩ hb(K) and it follows that

hb(N) ∩ hb(K) = {e}. We know g|K is an isomorphism K → C, so consider g′|hb(K) = (g′ ◦ hb)|K . For

an SES-isomorphism, g′ ◦ hb = hc ◦ g, so g′|hb(K) = (hc ◦ g)|K . Since hc is an isomorphism and g|K is an

isomorphism, g′|hb(K) is an isomorphism too. We’ve thus established that hb(K) is in the right-split-group of

the second SES, with (g′|hb(K))
−1 as its right-split map. Performing the same procedure in the other direction

returns us to K and (g|K )−1, so not only is right-splitting preserved but we have a bijection between the right-

split-groups. (iii) suppose we have an SES-isomorphism h between two SES’s and an SES-automorphism h′ of the

first which takes right-split-group K to K′. h induces an SES-automorphism of the 2nd SES via h◦h′ ◦h−1, and
this SES-automorphism takes hb(K) to hb(K

′). It is easy to see (by inverting this) that the isomorphism induces
a bijection between the elements of the RSG-classes of the two SES’s. (iv) Suppose we have two isomorphisms h

and h′ between the same two SES’s. Then h′ ◦ h−1 is an SES-automorphism of the 2nd SES which maps hb(K)

to h′b(K), placing them in the same RSG-class. The same holds going the other way. (v) Given two SES’s and

an RSG-class of the first SES, all isomorphisms between them map it to the same RSG-class of the 2nd SES (and
this is invertible if we go the other way). Because isomorphisms compose, this means that given an RSG-class of
one SES, there is a unique corresponding RSG-class of every other SES in the isomorphism class. I.e., we have a
natural bijection between the SES-classes of any two isomorphic SES’s. [Any specific isomorphism then induces a
bijection between the members of every pair of corresponding RSG-classes.] Since a choice of RSG-class for any
SES fixes one for every other in this fashion, it makes sense to speak of the RSG-classes of the isomorphism-class.
These may be labeled via the RSG-classes of any SES in that isomorphism class.

–

Note that if we have a right-splitting SES, it is not possible to form an isomorphism to a non-right-splitting SES.
Similarly, if we have two isomorphisms between two right-splitting SES’s which take K to hb(K) and h′b(K)

where hb(K) ̸= hb(K
′) then there is an SES-automorphism of the 2nd which takes hb(K) to h′b(K). I.e., of K′

and K′′ aren’t in the same RSG-class of the 2nd SES, there can be no isomorphisms from the first taking K to
them. We can have an isomorphism that takes K to K′ or one which takes K to K′′ or neither — but not both.

–
Also note that there may be more than one right-splitting isomorphism class. All we’ve said is that we cannot
mix right-splitting and non-right-splitting SES’s in the same class.

• Prop 4.7: The property of left-splitting is preserved under SES-isomorphism.

Pf: Let h be an SES-isomorphism between left-splitting SES e → A
f
−→ B

g
−→ C → e and some other SES e → A′

f′
−−→

B′
g′
−−→ C′ → e, and suppose k : B → A is a left-split map of the 1st (i.e. k ◦ f = IdA). Define k′ : B′ → A′ via

k′ ≡ ha ◦ k ◦ h
−1
b

. Then k′ ◦ f′ = ha ◦ k ◦ h
−1
b
◦ f′, but hb ◦ f = f′ ◦ ha. Since ha is an isomorphism, we can write

f′ = hb ◦ f ◦ h−1
a , and we have k′ ◦ f′ = ha ◦ k ◦ h

−1
b
◦ hb ◦ f ◦ h−1

a = ha ◦ k ◦ f ◦ h−1
a . But k ◦ f = IdA, so we get

ha ◦ h−1
a = Id

A′ . Therefore, the 2nd SES left-splits as well.

•
Since right-splitting and left-splitting are preserved across the entire isomorphism class, they also are preserved in each
smaller core normal/quotient class. I.e., an SES left (right) splits iff all its derivative SES’s left (right) split.

•
We will see later that for any A and C there not only is a unique left-splitting SES-isomorphism class, but a unique left-
splitting SES-equivalence class.

5 Some Notes about SES’s

• An SES basically says we can build group B from groups A and C in a way which
setwise is A × C (i.e. bijective with it) and where there is a core normal/quotient
relation involved. This means we can define a group structure on A× C in a manner
which is compatible with the multiplications on A and C. We will see how to do this
explicitly later.

• Though setwise B = A× C, topologically and algebraically it is not a direct product
in general.
This is analogous to the situation for a fiber bundle. In fact, there is a close relationship between SES’s and fiber bun-
dles. However, that is a topic for another time.

• It sometimes is said that the concept of a subgroup is dual to the concept of a quotient
group. This is intuitive in the following sense. A subgroup can be thought of as an
injective homomorphism. By the SES for normal/quotient groups, we can think of
a quotient group as a surjective homomorphism. Since injections and surjections
are categorically dual, it makes sense to think of quotient groups and subgroups as
similarly dual. Whether the more useful duality is subgroup/quotient-group or normal-
subgroup/quotient-group depends on the purpose.
Bear in mind this is a duality, not a bijection. Isomorphic normal subgroups can induce non-isomorphic quotient groups.
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A word of warning: there are some things which look like an SES but actually are not —
even though they sometimes are called one. An SES always is a sequence of groups and
homomorphisms. Here are two cases which sometimes can be confusing:

• The birthplace of exact sequences was algebraic topology. There, we encounter “short
exact sequences” of chain complexes. These technically are not SES’s in the sense we
just described, though they are closely related.

–

Given a simplicial (or cellular) decomposition of a topological space X, we define Cn to be the free abelian group
generated by the set of simplices (or cells) of dimension n for X. A chain complex is a sequence of homomor-

phisms · · · ← Cn−2

∂n−1←−−−−− Cn−1
∂n←−−− Cn ← . . . s.t. ∂n−1 ◦ ∂n = 0. These maps are collectively denoted

∂ (with the relevant ∂n understood from the location in the chain complex), and we abbreviate the composition

rule as ∂2 = 0. A SES of chain complexes is a sequence of SES’s, each between Cn’s of a given dimension n. I.e.,
given three chain complexes, we line them up horizontally (one above the other) and then have an SES downward
for each n. We also require that all the boxes commute. I.e., an SES of chain complexes is a sequence of individ-
ual SES’s with the additional commutativity requirement vis-a-vis the ∂’s. The reason such things matter is that
an SES of chain complexes gives rise to a long exact sequence (in the true sense) of homology groups for the three
spaces whose chain complexes are involved. Dually, an SES of cochain complexes (whose homomorphisms are de-
noted d instead of ∂) gives rise to a long exact sequence of cohomology groups.

–

A canonical example, and one which can be particularly misleading, is the fiber bundle SES. This typically is
written e → F → E → B → e (or F → E → B for short), where the fiber is F , the bundle is E, and the
base space is B. None of these need be groups. Even for a principal bundle, B need not be a group — so it’s not
merely a matter of the type of fiber involved. What actually is being depicted is the SES of chain complexes for
those three spaces. And indeed, this SES of chain complexes induces a long exact sequence relating the homology
groups of those spaces. For a fiber bundle, there also is a long exact sequence of homotopy groups (in the order
F − E − B as well) which proves very useful when discussing Lie Groups (since their covering groups are fiber
bundles) among other things.

• Another common SES-like sequence is H → G → G/H for group G and general
subgroup H. If H is normal, this is indeed an SES. However, sometimes people write
this SES-like sequence more generally to describe the quotient space. In that case, we
are not dealing with homomorphisms. I.e. q is just a map.
In some cases, q may be a smooth fn rather than just a set map. Ex. for Lie Groups, G/H is a smooth manifold and q is
a smooth fn.

6 External vs Internal View

We’ll now describe three types of group operations or relationships between groups. In
increasing order of generality and decreasing order of simplicity, these are the direct product,
the semi-direct product, and the group extension. Each has a particular relationship to
normality and SES’s. We can view each in two ways three ways: as combining groups to
form a new group, as describing a relationship between existing groups, or in terms of a SES.
Note that a lot of the elements of the proofs below may seem redundant. This is intentional. The goal is for each proof to
roughly stand on its own (unless obviously derivative) to make clear where information is coming from and where it is going.
This leads to similar arguments in different proofs.

• External view: A way of building a third group from two existing groups. This may
be viewed as a binary operation.

• Internal view: A relationship between a group, a normal subgroup, and the corre-
sponding quotient group.

• SES view: An SES with certain properties.

If we combine two groups A and C into a third group B via the external view, then the
internal view describes the resulting relationship between A, B, and C. If we view A and C
as related to an existing B, then the external view tells us how they can be combined into
it from scratch. In both cases, we can construct a corresponding SES. Conversely, an SES
with suitable properties tells us both how to construct B from A and C and how to view A
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and C in the context of a normal/quotient relationship to B.
The three views are equivalent up to some syntactic sugar which may appear in one view but not another. They are completely
equivalent modulo SES-isomorphism, as will be apparent when we discuss group extensions. Whether they are precisely equiv-
alent beyond that depends on the details of how we define the SES-view. Some confusion studying the subject can arise from
the different views used in different treatments, the cavalier way these often are handled, and whether the authors implicitly are
working with SES-isomorphism classes or not.

6.1 Overview of External View Construction

Before delving into the specifics, let’s preview what we’ll be doing. This section may be
more useful after reading the sections on direct products and semidirect products, as it
references some elements we have yet to discuss.

In light of the machinery we’ve already developed, the internal view and SES view descrip-
tions of all three operations will be relatively straightforward. The real challenge will be
the external view. In this, we start with two unrelated groups (usually denoted A and C
or H and K) and must construct a third group (usually denoted B or G) in a manner
which produces a suitable normal/quotient relationship between the three groups. We’ll
do this by starting with a set A× C and then determining the constraints on any suitable
multiplication on it. In doing so, it will be important not to confuse our set-labels with the
group structure.

The basic problem is to construct a group by imposing a multiplication on the set B = A×C
from those on A and C and any ancillary info (such as splitting-maps or a semidirect product
homomorphism ϕ) such that:

• (i) A is isomorphic to a normal subgroup of B. I.e., there exists an injective homo-
morphism f : A → B s.t. f(A) ◁ B.

• (ii) C is isomorphic to the corresponding quotient group B/f(A). I.e., there exists
an isomorphism α : B/f(A) → C.

• (iii) enforces left-splitting if a direct product or right-splitting if a semidirect product,
with splitting maps that are compatible with the provided information.

In all three operations we will consider (direct product, semidirect product, and general
group extension), there are certain common aspects to the construction as well as some
which differ. As mentioned, these concepts will be introduced later and elaborated on in
great detail. This is a brief preview, and is not intended to make sense on a first reading.

• The following will remain the same:

– (i) B looks set-wise like A×C, in the sense that we usefully can label its points
(a, c).
”Usefully” means exactly that. We are not claiming this is a parametrization or reflects the group struc-
ture, just that it will be a convenient labeling scheme for the elements of B. See our comments about
topology and parametrization below.

– (ii) i takes a to (a, e). I.e., (A, e) constitutes the relevant normal subgroup.

– (iii) We define a surjective homomorphism g : B → C which takes (a, c) to c.
This is q ◦ α, with q the quotient map. I.e., C labels the relevant quotient group B/i(A) and g is compati-
ble with the quotient. Put another way, the quotient classes are (a, C), as we’ll now explicitly state.

– (iv) The quotient classes (i.e. cosets) B/i(A) are of the form (a,C) (though they
aren’t necessarily distinct for all a’s).
I.e., the quotient slices are the same, regardless of which op is involved. This is not surprising when we
consider that a direct product is a type of semidirect product is a type of general extension.
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– (v) There is an induced isomorphism α([(a, c)]) = c between B/i(A) and C.

– (vi) (e, e) always is the multiplicative identity on B.

–(vii) (a, c) · (a′, c′) = (m(a, a′, c, c′), cc′) for some function m we will construct.
I.e., the 2nd half always multiplies as cc′.
Intuitively, we move around the quotient group via cc′ and then multiply within the slices. The latter can
involve all sorts of twisting, embodied in the function m.

–(viii) (a, c)−1 = (j(a), c−1) for some function j we will construct. I.e., the 2nd half
always inverts as c−1.

• What differs is:

– (i) The specific multiplication on B. I.e., the function m.

– (ii) The specific inverse on B. I.e., the function j.

– (iii) Whether B/i(A) (and thus C) is isomorphic to a subgroup of B and, if so,
whether a normal subgroup.
If we are confining ourselves to a direct product or semidirect products, these are additional constraints on
the admissible multiplications on the set B = A × C.

– (iv) For a direct product, the left splitting map is h(a, c) = a.

– (v) For a semidirect product, the right splitting map is h′(c) = (e, c).

Once we’ve determined the constraints, we then can ascertain which multiplications on the
set B = A × C are admissible. We also can add attaching maps afterward (keeping B
unchanged), which apply automorphisms to A and C, thus producing any viable f and
g we wish (we adjust any splitting-maps h and h′ accordingly). The core f(A) ◁ B and
C ≈ B/f(A) relationships are unchanged by doing so, nor are whether the SES right or left
splits (though the specific splitting maps and isomorphism map will be).

We’ll conduct this entire procedure in gory detail in the addendum. For now, we’ll build
up by starting with the direct product, then moving to the semidirect product, and finally
looking at general group extensions in all their hideous glory. But first, a brief word about
labels and parametrization.

6.2 Quick Note on Topology

One important note about the constructions we will describe and the proofs we will employ:
topology plays no role.

• In much of what we discuss, we’ll be combining two existing groups A and C into
some other group B. One of the premises is that B “looks like” A × C setwise. By
this, we don’t just mean B is bijective with A × C, but also that we choose to label
its points (a, c).

• This always can be done and should not be confused with a parametrization. We’re
simply naming points for convenience, so that when we talk about things like a · a′
(using A′’s multiplication) it will be clear what point we are referencing.

• Again, these are labels, not a global parametrization. Even if A and C are topological
groups, we are not imposing the product topology or any other topology. We are
not assuming that a global parametrization exists (i.e. a global homeomorphism to
A × C) or even that a local parametrization does. Even when B could admit a
compatible topological structure (ex. as a fiber bundle) and/or smooth structure
(i.e. as a manifold), we are not imposing one here.

28 of 49



Ken Halpern Notes Semidirect Products, Group Extensions, Split Exact Sequences, and all that

• I.e. our construction of a multiplication on B is purely algebraic.
• Of course, its implementation for concrete groups may very well involve introducing
specific parametrizations.
This is akin to the difference between the group theory of a Lie Group and its manifold structure. We can speak of the
group theory in terms of labels g and g′ and g · g′, without worrying about patches and parametrizations and the topol-
ogy of G. However, to actually compute with a given group we must use concrete parametrizations — and all those con-
siderations then become important.

• The gist is that our use of labels (a, c) for points in A×C is not problematic, even if the
only compatible topological structures (i.e. those which make the group a topological
group) are non-product topologies, and even if the only continuous parametrizations
are local (i.e. it is a topological manifold).
The same could be said of the mobius strip vs the unit square. Both are I × I setwise in the sense described. I.e. their
points can be labeled (x, y) with x, y ∈ [0, 1]. Only when we impose a topology does the question arise whether a con-

tinuous global parametrization S → [0, 1]2 exists. In the case of the unit square, our labeling happens also to serve as a

suitable parametrization (because I2 is a closed subset of R2, which has its own topology). For the mobius strip, there
is no global parametrization. It is a manifold with boundary and requires at least two charts. In that case, our label-

ing is not a parametrization because there *is* no global homeomorphism with R2. Nonetheless, we can identify specific
points in each chart with our (x, y) labels. We just can’t do so globally in a way which produces a homeomorphism (i.e.
a continuous map with continuous inverse).

• On a related note, it is hard not to remark the conceptual similarity between semidirect
products and fiber bundles. Both involve twisting via an automorphism of one object
as we move around another object. As mentioned earlier, there is in fact a connection
between the two, but that will be a topic for another time.

6.3 Direct Product

The direct product is the simplest way to combine two groups into a third which looks like
their product set-wise.

• External view: Given two groups H and K, their direct product H ⊕K is set-wise
H ×K with multiplication defined as (h, k)(h′, k′) ≡ (hh′, kk′).

It follows from the mult on H and K that (e, e) is the identity and (h, k)−1 = (h−1, k−1). It is easy to verify that this
is in fact a group.

• Internal view: A group G with two normal subgroups N1 and N2 that are dis-
joint (in the sense that N1 ∩ N2 = {e}) and s.t. every g ∈ G has a decompo-
sition g = n1 · n2 for some n1 ∈ N1 and n2 ∈ N2. We write G = N1 ⊕ N2.
From Prop 2.3 and Prop 2.5, it follows that the decomposition g = n1n2 is unique, N1 ≈ G/N2, and N2 ≈ G/N1.

• SES view: An SES e → A
f−→ B

g−→ C → e which left-splits (and thus right splits,
too). We write B = A⊕ C.
Technically, it is an SES-isomorphism class. We will see that there is a unique such isomorphism class which left-splits
for any choice of A and C. As we also will see, the SES-isomorphism class in question actually is an SES-equivalence
class as well.

The direct product of two groups always exists and always is unique. Moreover, if H ≈ H ′

and K ≈ K ′ then H ⊕K ≈ H ′ ⊕K ′. Let’s now prove some of these claims.

• Prop 6.1: The external view implies the internal view.
Pf: Start with the external view. (h, k)(h′, e)(h, k)−1 = (hh′h−1, e) ∈ (H, e), so (H, e) ◁ H ⊕ K. Similarly,

(h, k)(e, k′)(h, k)−1 = (e, kk′k−1) ∈ (e,K), so (e,K) ◁ H ⊕ K. The cosets in (H ⊕ K)/(H, e) are (h, k′)(H, e) =
(something, k) and q(h, k) = k under the quotient map. The map α : (H ⊕ K)/(H, e) → (e,K) given by
α([(h, k)]) = (e, k) therefore is well-defined. It trivially is bijective and trivially is a homomorphism (and thus an iso-
morphism). So we have the internal view with N1 = (H, e) and N2 = (e,K).

• Prop 6.2: The internal view implies the external view.
Pf: This follows directly from Prop 2.3 and Prop 2.5. We can label each g by its unique n1n2 decomposition. I.e.,

we can label G as (set-wise) N1 × N2. Since N1 and N2 commute with one another, the multiplication is gg′ =

n1n2n′1n′2 = n1n′1n2n′2. This is just the multiplication from the external view (we used (n1, n2) notation there in-
stead).
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• Prop 6.3: An external-view direct product H ⊕K defines a left-splitting SES e →
H

i−→ H ⊕ K
q−→ K → e, where i(h) ≡ (h, e) and q(h, k) ≡ k. The left split map is

h1(h, k) = h and the corresponding right split map is h2(k) = (e, k).

–

Pf: All four maps trivially are homomorphisms given the external-view multiplication. i plainly is injective and q
plainly is surjective. ker q = (H, e) and Im i = (H, e), so we have an SES. The left-split map trivially satisfies
h1 ◦ i = IdH and the right-split map trivially satisfies q ◦ h2 = IdK .

–

We can reverse everything to get another left-splitting SES e → K
h2−−→ K ⊕H

h1−−→ H → e (which has q and i as
its left and right split maps). We’ll see shortly that K ⊕ H ≈ H ⊕ K, though we don’t have an SES-isomorphism
(obviously, since H ̸≈ K in general).

–

Without changing the relevant core normal/quotient relation, we can expand this to a seemingly more general
SES by replacing H and i with any A and f s.t. f(A) = (H, e) and replacing K and q with any C and g s.t.
C ≈ K and ker g = ker q. However, as seen earlier all such SES’s are isomorphic to our original one. In fact that
original one is the derivative normal/quotient SES for them all.

• Prop 6.4: Given any left-splitting SES e → A
f−→ B

g−→ C → e (with left-split map
h1 and corresponding right-split map h2), we have the internal-view direct product
B = f(A)⊕ h2(C).

–

Pf: Let N1 ≡ f(A), which is normal in B for an SES, and let N2 ≡ h2(C). We saw in Props 4.2 and 4.3 that
for a left-splitting SES, the right-split map h2 is an isomorphism between C and a normal subgroup h2(C) ◁ B.
I.e., both N1 and N2 are normal in B. We also saw that h2(C) = ker h1 for such an SES (and we know that
f(A) = ker g for any SES). So N1 ∩N2 = (ker g)∩ (Im h2). However, g ◦h2 = IdC , so ker (g ◦h2) = {e}. Since
h2 is injective, ker h2 = {e}, and ker (g ◦ h2) = ker (g|Im h2

) = (ker g) ∩ (Im h2), so (ker g) ∩ (Im h2) = {e}
(i.e. N1 and N2 are disjoint). What remains is to show that every element of x ∈ G has a decomposition n1n2.
We’ll show that n1 = (f ◦ h1)(x) and n2 = (h2 ◦ g)(x). Define y ≡ f(h1(x)) · h2(g(x)). First consider
g(y) = g(f(h1(x))) · g(h2(g(x))). Since g ◦ h2 = IdC and ker g = Im f, this is just e · g(x) = g(x). I.e., y and
x are in the same coset under B/f(A). Now suppose they are different. Then x = f(a)y for some a ∈ A. But
f(a)f(h1(x)) · h2(g(x)) = f(ah1(x)) · h2(g(x)). We now know that x has the necessary decomposition (since
f(ah1(x)) ∈ N1), but let’s show a = e (i.e. that our precise projection maps are correct). Consider h1(x) =
h1(f(a · h1(x))) · h1(h2(g(x))). But we know that ker h1 = Im h2, so h1(h2(g(x))) = e. We also know h1 ◦ f =
IdA so h1(x) = ah1(x) and a = e. We not only have shown that every x has a decomposition but we have
exhibited it (and from Prop 2.3 we know it is unique).

– As mentioned, this often is written B = A ⊕ C, but that obscures the roles of the attaching and splitting maps.

– Together with the previous result, this tells us that e → A
f−→ B

g−→ C → e
left-splits iff it is a direct product.

• Prop 6.5: : Any left-splitting SES e → A
f−→ B

g−→ C → e is SES-equivalent to the

direct-sum SES e → A
i−→ A ⊕ C

π−→ C → e (where A ⊕ C is the external-view direct
sum and i(a) = (a, e) and π(a, c) = c). Consequently, B ≈ A⊕ C in all such cases.

–

Pf: Let k : C → A be any left-split homomorphism. We know k is surjective. We need to exhibit an isomorphism
hb : B → A ⊕ C for which i = hb ◦ f and g = π ◦ hb. The obvious candidate is hb(b) = (k(b), g(b)). Let’s
first verify that it satisfies the commutativity conditions. (hb ◦ f)(a) = (k(f(a)), g(f(a))), but k ◦ f = IdA and
g(f(a)) = e (since Im f = ker g), so (hb ◦ f)(a) = (a, e) = i(a). For the second condition, (π ◦hb)(b) = g(b) triv-

ially, so g = π ◦ hb. Since hb(e) = (k(e), g(e)) = (e, e) and hb(bb
′) = (k(bb′), g(bb′)) = (k(b)k(b′), g(b)g(b′)) =

(k(b), g(b))(k(b′), g(b′)), where the latter is just the mult on A ⊕ C, it is clear that hb is a homomorphism.
ker hb is the set of all b s.t. (k(b), g(b)) = (e, e). I.e., it is (ker k) ∩ (ker g). However, ker g = Im f = (A, e),

and ker k = k−1(e). Since k ◦ f = IdA, ker k|f(A) = (e, e). So ker k ∩ ker g = (e, e) and hb is in-

jective. Now consider some (a, c) ∈ A ⊕ C. We need a b s.t. hb(b) = (a, c). I.e., we need k(b) = a and

g(b) = c. Since g is consistent with cosets and is surjective, g−1(c) is a coset. Pick any element x ∈ g−1(c),

and let a′ ≡ k(x). Then pick b = f(a · a′−1)x. This clearly has g(b) = g(f(a · a′−1))g(x) = g(x) and

k(b) = k(f(a · a′−1))k(x) = a · a′−1 · a′ = a. Since hb is a bijective homomorphism it is an isomorphism.

– This tells us that the choice of left-split homomorphism is irrelevant. All that
matters is whether the SES left-splits or not.

– This also tells us that for the given A and C (in that order), there is a unique
left-splitting SES-equivalence class.

• Prop 6.6: The direct product of H and K is unique.
Pf: Clearly, the external-view construction is unique (we gave a specific set and group operation on it). In the internal-
view, it’s less obvious what we mean by uniqueness. In that case, we ask whether there can be a non-isomorphic group
G′ which has normal subgroups N′1 and N′2 isomorphic to N1 and N2 and satisfying the requirements of a direct sum.
Since we know the SES-view is equivalent, it’s easier to work with that (and ultimately, we’d be reduced to doing so any-
way). In the SES-view, uniqueness follows directly from Prop 6.5.
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• Prop 6.7: H ⊕K ≈ K ⊕H.
Pf: This is evident from the group-swap symmetry present in all three views. Let’s verify it explicitly, however. In the
external view, the map α : H ⊕ K → K ⊕ H defined α(h, k) = (k, h) is an isomorphism. α(e, e) = (e, e), and

α((h, k)(h′, k′)) = α(hh′, kk′) = (kk′, hh′) while α(h, k)α(h′, k′) = (k, h)(k′, h′) = (kk′, hh′) (the latter under
the mult on K ⊕ H), so the two are equal and α is a homomorphism. However, α trivially is bijective and a bijective ho-
momorphism is an isomorphism.

Note that there is no corresponding SES-isomorphism since H ̸≈ K in general.

• Prop 6.8: If H ′ ≈ H and K ′ ≈ K then H ′ ⊕K ′ ≈ H ⊕K, and the corresponding
SES’s are SES-isomorphic too.

– I.e., we can find isomorphisms s.t. the following diagram commutes:

e H H ⊕K K e

e H ′ H ′ ⊕K ′ K ′ e

i

α

q

ρ β

i′ q′

–

Pf: This is easiest seen in the external view, so let’s do that first. Let α : H → H′ and β : K → K′ be any iso-
morphisms. Consider the bijection ρ : H⊕K → H′ ⊕K′ give by ρ(h, k) → (α(h), β(k)). This is a homomorphism

because (i) ρ(e, e) = (e, e) and (ii) ρ((h, k)(h′, k′)) = ρ(hh′, kk′) = (α(hh′), β(kk′)) = (α(h)α(h′), β(k)β(k′))
but also ρ(h, k)ρ(h′, k′) = (α(h), β(k))(α(h′), β(k′)) = (α(h)α(h′), β(k)β(k′)).

–

Pf: Let’s show that this in fact is an SES-isomorphism between e → H
i−→ H ⊕ K

q
−→ K → e and e → H′ i−→

H′ ⊕ K′
q
−→ K′ → e. We must show that our α, β, and ρ make the SES-isomorphism diagram above commute.

For this, we need ρ ◦ i = i′ ◦ α and β ◦ q = q′ ◦ ρ. Note that ρ ◦ i takes h → (h, e) → (α(h), e), while i′ ◦ α

takes h → α(h) → (α(h), e). Since q here is just q(h, k) = k, β ◦ q takes (h, k) → k → β(k) while q′ ◦ ρ takes
(h, k) → (α(h), β(k)) → β(k). The diagram therefore commutes, and we have an SES-isomorphism.

• To summarize:

– e → A
f−→ B

g−→ C → e left-splits iff B is the direct product of A and C.
– The direct product of two given groups is unique.
– B can be a direct product of both A,C and non-isomorphic A′, C ′ (ex. A⊕ (B⊕

C) = (A⊕B)⊕ C).
– A⊕ C ≈ C ⊕A.

•

Note that the ”direct product” is a general construction in mathematics. With groups, people more often refer to the
”direct sum”. Formally, this is identical except when an infinite number of groups are involved. The direct product of
an infinite number of groups consists of all indexed sets of elements (one from each) with arbitrary numbers of those el-
ements allowed to be non-trivial, whereas the direct sum is the same but allows each indexed set (i.e. element of the di-
rect sum) to have only a finite number of non-identity component elements.

6.4 Semidirect Product

The semidirect product may seem a bit arbitrary at first but, as we will see, it is nothing
more than the middle child of a progression which begins with the direct product and
ends with general group extensions. However, in some ways semidirect products are the
most troublesome of the three. Direct products are simpler because they are unique up to
isomorphism. Group extensions are technically more difficult to construct, yet conceptually
easier because they are less constrained. Semidirect products are constrained in a particular
way and have an extra moving part.

Let’s start with a quick summary of the three views and then we’ll discuss each in more
detail, as well as the relationships between them.

• External view (aka Outer Semidirect Product): Given two groups H and K and a
homomorphism ϕ : K → Aut(H), we define a new group G = H⋊ϕK, labeled setwise
as H ×K and with multiplication defined by (h, k)(h′, k′) = (hϕk(h

′), kk′).

–
The multiplication on Aut(H) is composition. So ϕ being a homomorphism means ϕ

kk′ = ϕk ◦ ϕ
k′ .
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– Prop 6.9: It follows from the group axioms that (e, e) must be the identity and
that the inverse must be (h, k)−1 = (ϕk−1(h−1), k−1). We then indeed have a
group.
Pf: (identity) (e, e)(h, k) = (eϕe(h), ek) = (ϕe(h), k) = (IdH (h), k) = (h, k), so the only candidate for identity
is (e, e). Similarly, (h, k)(e, e) = (hϕk(e), ke) = (he, ke) = (h, k) because ϕk(e) is an automorphism applied to e
and thus yields e. So (e, e) is the identity element.

Pf: (inverse) (h, k)(h, k)−1 = (h, k)(ϕ
k−1 (h−1), k−1) = (hϕk(ϕ

k−1 (h−1)), kk−1). However, ϕ is a ho-

momorphism so ϕk ◦ ϕ
k−1 = IdK , and this is just (hh−1, e) = (e, e). Therefore, the specified expres-

sion is the only candidate for the inverse. Similarly, (h, k)−1(h, k) = (e, e). To see this, we’ll just show that

((h, k)−1)−1 = (h, k). The left side is (ϕk(ϕ
k−1 (h)), k). Since ϕ is a homomorphism, ϕk ◦ ϕ

k−1 = ϕe = IdH

as needed. So our expression for (h, k)−1 behaves like a two-sided inverse.

Pf: (associativity): Consider ((h, k)(h′, k′))(h′′, k′′). This is (hϕk(h′), kk′)(h′′, k′′) =

(hϕk(h′)ϕ
kk′ (h

′′), kk′k′′). Likewise, consider (h, k)((h′, k′)(h′′, k′′)). This is (h, k)(h′ϕ
k′ (h

′′), k′k′′) =

(hϕk(h′ϕ
k′ (h

′′)), kk′k′′). So we need ϕk(h′)ϕ
kk′ (h

′′) ?
= ϕk(h′ϕ

k′ (h
′′)). This follows because

ϕ
kk′ (h

′′) = ϕk ◦ ϕ
k′ (h

′′) and ϕk(h′ϕ
k′ (h

′′)) = ϕk(h′)(ϕk ◦ ϕ
k′ )(h

′′). So our multiplication is asso-
ciative.

– Prop 6.10: Given H and K and ϕ, and any isomorphism α : K ′ → K and any
isomorphism γ : H → H ′, we have (i) H ⋊ϕ′ K

′ ≈ H ⋊ϕ K for ϕ′ ≡ ϕ ◦α and (ii)
H ′ ⋊ϕ′′ K ≈ H ⋊ϕ K for ϕ′′

k ≡ γ ◦ ϕk ◦ γ−1.

*

Pf: (i) Define an isomorphism β : H ⋊
ϕ′ K′ → H ⋊ϕ K via β(h, k) = (h, α(k)). This trivially is bijec-

tive and β(e, e) = (e, e). For multiplication, β((h, k)(h′, k′)) = β(hϕ′k(h′), kk′) = (hϕ′k(h′), α(kk′))
and β(h, k)β(h′, k′) = (h, α(k))(h′, α(k′)) = (hϕα(k)(h

′), α(k)α(k′)). Since α is an isomor-

phism, the 2nd components match up. We thus need to show that hϕ′k(h′) ?
= hϕα(k)(h

′). However,

ϕ′ = ϕ ◦ α, so ϕ′k(h′) = ϕα(k)(h
′) and we’re done. (ii) Define an isomorphism δ : H ⋊ϕ K →

H′ ⋊
ϕ′′ K′ via δ(h, k) = (γ(h), k). This trivially is bijective and δ(e, e) = (e, e). For multiplication,

δ((h, k)(h′, k′)) = (γ(hϕk(h′)), kk′) = (γ(h)γ(ϕk(h′)), kk′) and δ(h, k)δ(h′, k′) = (γ(h), k)(γ(h′), k′) =

(γ(h)ϕ′′k (γ(h′)), kk′). But ϕ′′k (γ(h′)) = γ(ϕk(γ−1(γ(h′)))) = γ(ϕk(h′)). So the two sides are equal and
we’re done.

*

Note that from the standpoint of the external-view, H and K are just groups. We don’t care what we call
them, and the notion of isomorphic groups is irrelevant. There’s no master group in which they are embed-
ded or that defines relationships. All the relationships will arise from the external-view construction itself.
Put another way, our proposition really says that H ⋊ϕ K ≈ H ⋊

ϕ′ K ≈ H ⋊
ϕ′′ K where α ∈ Aut(K) and

γ ∈ Aut(H). I.e., for given (isomorphism classes of) groups H and K, we have identified classes of ϕ’s that
result in isomorphic constructions H ⋊ϕ K. I.e., for a given H and K, we have an equivalence relation on

the ϕ’s. However, this needn’t be the same as the isomorphism classes of H ⋊ϕ K. It is possible that there

are other isomorphisms too. I.e., it is a refinement of the isomorphism classes of H ⋊ϕ K.

* Prop 6.10 tells us two things: (i) we don’t really need to consider isomorphic
H ′’s or K ′’s because any ϕ we build with them can be mapped to a ϕ built
from H and K and (ii) even when we fix H and K, ϕ’s related by members of
Aut(H) and/or Aut(K) in certain ways lead to group-isomorphic construc-
tions. (i) tells us we can fix an H and K and vary ϕ alone without loss of
generality, which really just makes our bookkeeping a bit simpler. (ii) tells
us that for a given H and K, we can partition the ϕ’s into classes s.t. all the
members of a given class lead to group-isomorphic constructions. We’ll call
these PA-classes (for ϕ-automorphism classes).
Note that members of distinct PA-classes may lead to isomorphic constructions as well. I.e., the partition
of the space of ϕ’s into PA-classes is a refinement of the partition by group-isomorphic constructions.

– The subscript in H ⋊ϕ K often is omitted and people write H ⋊ K, with the
choice of ϕ implicit. This makes sense for the internal view below (where N and
K are specified subgroups of G), but less so for the external-view, where we need
ϕ in order to understand the relationship of H and K to H ⋊ϕ K. Some people
also write K ⋉H (or K ⋉ϕ H) instead.

– Note that ϕ is nothing other than an action of K on H. All we are saying is that
we have two groups and an action of one on the other.
This action need not be free or transitive. ϕ is a homomorphism and need not be injective or surjective. It is
quite possible for ϕk(h) = h for some h ̸= e and k ̸= e, and there is no requirement that for every h, h′, ∃k
s.t. ϕk(h) = h′.

• Internal view (aka Inner Semidirect Product): Given a group G, a normal subgroup
N◁G, and a subgroup K ⊂ G s.t. N∩K = {e} and G = NK, we call G the semidirect
product N ⋊K.
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– Recall that G = NK just means that every element of G can be written g = nk for some n ∈ N and k ∈ K.

– Note the similarity to the direct product definition. The only difference is that K is not normal here.

– Equivalent definition: A group G and N ◁ G and K ⊂ G s.t. N ∩K = {e} and
q|K : K → G/N is an isomorphism.
Pf: Prop 2.4 gives us this in one direction and Prop 2.3 gives us it in the other.

–

Note the freedom we have here. We can pick K if more than one suitable option is available, but once we’ve done
so, the semidirect product is locked down. Also note that *any* K ⊂ G s.t. N ∩ K = {e} and q|K is an isomor-
phism gives rise to a semidirect product N ⋊ K. However, this does not mean all such products are distinct. It is
quite possible that N ⋊ K ≈ N ⋊ K′ for two such subgroups. We’ll now see one important case of this.

– Prop 6.11: Given two internal-view semidirect products with the same G and
N , but different K and K ′, if there exists an automorphism on G which restricts
to an automorphism on N and maps K to K ′ then N ⋊K ≈ N ⋊K ′.
Pf: There is nothing to prove. The automorphism on G is precisely the isomorphism N ⋊ K ≈ N ⋊ K′. We need
it to take K to K′ and we need it to preserve N, both of which it does by assumption.

This is a sufficient but not necessary condition. There can be ”series-equivalent non-automorphic” cases as well
(as discussed earlier).

• SES-view: A semi-direct product is a right-splitting isomorphism class of SES’s along
with an RSG-class.
Recall that RSG-class and its meaning in the context of an isomorphism class are discussed under Prop 4.6.

Note that (using core normal/quotient SES notation), an RSG-class consists precisely of a set of K’s satisfying Prop 6.11
for the internal view. I.e., the right-split freedom we have in the SES-view is the same as that in the internal-view.

These three views are materially equivalent modulo isomorphism. Let’s now see this for-
mally.

• Prop 6.12: Given an internal-view semidirect product, we have a corresponding SES-
view one.
Pf: We can get the SES-view two ways, but they are related in a trivial way. (i) Because N ◁ G, we have an SES e →

N
i−→ G

q
−→ G/N → e. Using q|K formulation of the internal view, we have an isomorphism q|K : K → G/N. Be-

cause K ⊂ G, we can use (q|K )−1 : G/N → K ⊂ G as our right-split map. It is a homomorphism and trivially has

q ◦ (q|K )−1 = IdG/N . So K is in fact a right-split-group of our SES. We then pick the RSG-class containing K. As

we saw in Prop 4.6, the entire SES-isomorphism class is right-splitting. We then have a unique RSG-class for every other
SES in that isomorphism class. As discussed, this is what is meant by the RSG-class of the isomorphism class. (ii) We

also have the SES e → N
i−→ G

π2−−→ K → e. We saw in Prop 2.3 that π2 is a surjective homomorphism and that

ker π2 = N, so this is indeed an SES. The right-split map is just subset inclusion i′ : K → G. This is an injective homo-

morphism, and π2 ◦ i′ = π2|K = IdK so i′ is indeed a right-split map. We then pick the isomorphism class containing
this SES and RSG-class containing K. Note that the two give the same SES-view. (i) is just the core normal/quotient
SES of (ii), so the two SES’s are isomorphic. Moreover, there is an isomorphism that maps K ⊂ G in (i) to K ⊂ G in

(ii). It is given by ha = IdN , hb = IdG, and hc = (q|K )−1. Therefore, K is in the RSG-class for both SES’s. Put
another way, K relative to SES (i) and K relative to SES (ii) are in a common RSG-class of the isomorphism-class.

• Prop 6.13: Given an SES-view semidirect product, we have a corresponding internal-
view one.
We actually have a class of internal-view ones, but they all are isomorphic to one another.

Pf: Without loss of generality, consider a core normal/quotient SES e → N
i−→ G

q
−→ G/N → e and let K be a mem-

ber of the RSG-class for the SES-view semidirect product. As we saw in Prop 4.4, q|K is an isomorphism K → G/N

and N ∩ K = {e}. This gives us an internal-view semidirect product. Moreover, given any other K′ in the same RSG-

class, we have an SES-automorphism which takes K to K′. However, an SES-automorphism is just an automorphism on
G which satisfies the conditions of Prop 6.11. I.e., given a right-splitting SES-isomorphism class and a RSG class of it,
all the internal-view semidirect products we derive from any SES in it and any right-split-group in that RSG class for
that SES will be group-isomorphic to one another.

• Prop 6.14: Given an external-view semidirect product, we have a corresponding
SES-view one.
Pf: We are given groups H and K and a homomorphism ϕ : K → Aut(H). The relevant SES is e → H

i−→ H ⋊ϕ K
q
−→

K → e, where H ⋊ϕ K is the external-view semidirect product, i(h) = (h, e) and q(h, k) = k, and the right-split map

is j(k) = (e, k) [we denote it j here since h and k already are in use]. i trivially is injective and q trivially is surjective.

Im i = (H, e), and ker q = (H, e). Since i(e) = (e, e) and i(hh′) = (hh′, e) and i(h)i(h′) = (h, e)(h′e) = (hϕe(h′), e) =

(hh′, e), i is a homomorphism. Since q(e, e) = e and q((h, k)(h′, k′)) = q(hϕk(h′), kk′) = kk′ = q(h, k)q(h′, k′),
q also is a homomorphism. We thus have an SES. As for the right-split, j trivially satisfies q ◦ j = IdK . To show it is

a homomorphism, we note that j(e) = (e, e) and j(kk′) = (e, kk′) = (e, k)(e, k′) = j(k)j(k′) since (e, k)(e, k′) =

(eϕk(e), kk′) = (e, kk′). We then take the SES-isomorphism class of our SES and the RSG-class of (e,K) (for our SES).

Even though ϕ doesn’t explicitly appear in i or q, it implicitly appears in the multiplication on H ⋊ϕ K, as is apparent

in the proof.
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Why doesn’t this left-split too? To left-split, we would need a homomorphism j′ : H ⋊ K → H which gives us j′ ◦ i =
IdH . Obviously, we can do this for (H, e), but extending it to all of H ⋊ K in general is not possible. Ex. one simple

candidate is j′(h, k) = h, but this won’t work. Why? j′((h, k)(h′, k′)) = j′(hϕk(h′), kk′) = hϕk(h′), which is not hh′

as hoped. Another candidate is j′(h, k) = ϕ
k−1 (h). This gives us (j′ ◦ i)(h) = ϕe(h) = h so it satisfies the condition.

In that case, j′((h, k)(h′, k′)) = j′(hϕk(h′), kk′) = ϕ
(kk′)−1 (hϕk(h′)) = ϕ

(kk′)−1 (h) · (ϕ
k′−1 ◦ ϕ

k−1 (hϕk(h′))) =

ϕ
(kk′)−1 (h)ϕ

k′−1 (h′). This is not ϕ
k−1 (h) · ϕ

k′−1 (h′), so it fails too. Note that the reason we can right split

isn’t because the 2nd component multiplies to kk′. As we will see, the multiplication on a general group extension has
this property too but it does *not* right-split. The ability to right-split is effected by the particular nature of our 1st-
component multiplication rule. This is in fact the most general form for which the SES *does* right-split.

Our right-split map j(k) = (e, k) in the external-view is independent of ϕ and seems pretty universal. Why can’t we use
it to right-split *any* SES? As mentioned earlier, we *always* can pick a section (i.e. an injective fn which picks an el-
ement of every class and for which q ◦ j = IdK ). However, it may not be a homomorphism. Our current j is just such
a section. In the case of the multiplication on H ⋊ϕ K we defined, the proof above shows that it is indeed a homomor-

phism. However, for a general SES this is not the case. As we will see, such an SES embodies a group extension, and the
obstruction will be evident when we exhibit the multiplication on it.

There appears to be a mismatch in freedom of choice. In the SES-view, we have freedom to pick an RSG-class for the
isomorphism class of the SES, but in the external-view we have freedom to choose any homomorphism ϕ. This seems like
far broader latitude than just picking an RSG class. We will have more to say about this shortly.

• Prop 6.15: Given an internal-view semidirect product, we have a corresponding
external-view one.
Pf: We are given G, N ◁ G, K ⊂ G s.t. N ∩ K = {e} and G = NK. We define the external view as H ≡ N, K(ext) ≡
K(int) (i.e. K is the same in both), and ϕk(n) ≡ knk−1. For a given k ∈ K ⊂ G, this is just the restriction of an
inner-automorphism of G to N. However, an inner-automorphism of G restricts to an automorphism on N, so ϕk is in-
deed in Aut(H = N). What remains is to show that ϕ is a homomorphism from K to Aut(N) We need only show that

ϕe = IdN and ϕ(kk′) = ϕk ◦ ϕ
k′ since composition is the multiplication in Aut(N). For the identity, ϕe(n) = ene = n,

so ϕe = IdN . For multiplication, ϕ
kk′ (n) = kk′nk′−1k−1 = ϕk(ϕ

k′ (n)). Lastly, we must show that the resulting

H ⋊ϕ K ≈ G. Define isomorphism γ : N ⋊ϕ K ≈ G via γ(n, k) ≡ n · k. Then γ(n, k)γ(n′, k′) = nkn′k′. On the other

hand, γ((n, k)(n′, k′)) = γ(nϕk(n′), kk′) = nϕk(n′)kk′ = nkn′k−1kk′ = nkn′k′. We therefore have a homomor-
phism. ker γ = (e, e), so γ is injective. It is surjective because for an internal-view semi-direct product every g = nk for
some n ∈ N and k ∈ K. So γ is a bijective homomorphism and therefore an isomorphism.

• Prop 6.16: Given an SES-view semidirect product, we have a corresponding
external-view one.
Pf: Prop 6.13 takes us from e → N

i−→ G
q
−→ G/N → e with right-split map j : G/N → G to an internal-view

semidirect product with G, N, and K = Im j. Prop 6.15 then takes us from this to the external-view semidirect product

N ⋊ϕ (Im j), where ϕk(n) = knk−1 for k ∈ Im j (i.e. we use the ambient G to define the relevant automorphisms).

• Prop 6.17: Given an external-view semidirect product, we have a corresponding
internal-view one.
Pf: Prop 6.14 takes us from H, K, and ϕ to e → H

i−→ H ⋊ϕ K
q
−→ K → e where i(h) = (h, e) and q(h, k) = k, and the

right-split map is j(k) = (e, k). Prop 6.13 then takes us to G = H ⋊ϕ K, N = (H, e), and K = (e,K).

• As mentioned, there may seem to be an information mismatch. The internal-view
and SES-view agree that we have a distinct semidirect product for every RSG-class
of a right-splitting isomorphism class of SES’s (although these “distinct” semidirect
products still could happen to be isomorphic). However, the external-view seems to
have a lot more freedom via its ϕ.

–

Note that from the standpoint of the internal-view it makes sense to speak of distinct isomorphic subgroups K
and K′ of G, but (as we discussed earlier) from the external-view standpoint it does not. K is an isolated group.
Anything isomorphic to it can be considered the same group. We saw in Prop 6.10 that given any H, K, and ϕ, if
we have isomorphisms α : K′ → K and γ : H → H′, there is a ϕ′ for which (H′ ⋊

ϕ′ K′) ≈ (H ⋊ϕ K). So where

does the ability to choose a subgroup of G come from? The construction G ≡ H ⋊ϕ K tells us *how* K embeds

in G. I.e., ϕ itself identifies how K embeds as a subgroup of G. Or, more precisely, it identifies the relevant class
of subgroups vis-a-vis Prop 6.11.

– Let’s fix H and K. Do the PA-classes defined in the discussion of Prop 6.10
correspond to the RSG-classes from the SES-view (and thus the automorphism-
related classes of the internal-view)? The following propositions tell us they do.

– Prop 6.18: Given groups H and K, and external-view homomorphisms ϕ and
ϕ′ which are related by Aut(H) and/or Aut(K) as described in Prop 6.10 (i.e. in
the same PA-class) we know that H ⋊ϕ K ≈ H ⋊ϕ′ K. The corresponding SES-
view (and thus internal-view) semidirect products are in the same RSG-class of
the same isomorphism class.
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Pf: Let’s consider the two cases from Prop 6.10 separately. (i) Let ϕ′ = ϕ ◦ α for α ∈ Aut(K), and denote G′ ≡

H ⋊ϕ K and G′ ≡ H ⋊
ϕ′ K The relevant right-splitting SES’s are e → H

i(h)=(h,e)
−−−−−−−−−→ G

q(h,k)=k
−−−−−−−−→ K → e with

right-split map j(k) = (e, k) and e → H
i′(h)=(h,e)
−−−−−−−−−−→ G′

q′(h,k)=k
−−−−−−−−→ K → e with right-split map j′(k) = (e, k).

Although these look the same (they have the same H, K, labeling, form of i, form of q, and form of j), bear in
mind that H ⋊ϕ K and H ⋊

ϕ′ K are distinct groups. The embedding of K could be different in each. I.e., (e,K)

could look quite different in the two groups. Let’s construct the relevant SES-isomorphism class and RSG-class.
In Prop 6.10 we saw that β(h, k) ≡ (h, α(k)) is a group-isomorphism between the two constructions that took

Im j to Im j′ (i.e. the copy of (e,K) in G to the copy of (e,K) in G′). [Note that technically we’re using α in

the opposite direction as the proposition here, but it doesn’t matter since K′ = K]. This is pretty much what

we need. Define our SES-isomorphism as hh ≡ IdH , hg ≡ β, and hk ≡ α. Then we need hg ◦ i = i′ ◦ hh
and q′ ◦ hg = hk ◦ q. Note that α(e) = e, hg(i(h)) = (h, e), and i′(hh(h)) = i′(h) = (h, e), so the first is

achieved. The second requires q′(β(h, k)) = α(q(h, k)). But q′(h, α(k)) = α(k), while α(q(h, k)) = α(k). We

thus have our SES-isomorphism. As for the RSG-class, (e,K) ⊂ G is mapped by β to (e, α(K)) ⊂ G′. But
α is an automorphism, so as a group (e, α(K)) is just (e,K) (though the elements in it are rearranged by the
automorphism, of course). I.e., we have the same RSG-class. So we’ve established that a specific isomorphism

class and RSG-class are involved. For (ii) we do much the same. Let ϕ′k ≡ γ ◦ ϕk ◦ γ−1 (with γ ∈ Aut(H)). In

that case, the two SES’s look the same as above (but with our new ϕ′ of course), and Prop 6.10 provides us with

an isomorphism δ(h, k) ≡ (γ(h), k) between G and G′. We define our SES-isomorphism to be hh ≡ γ, hg ≡ δ,

and hk ≡ IdK . The first condition is hg ◦ i = i′ ◦ hh. The left side is hg(i(h)) = hg(h, e) = (γ(h), e), while

the right side is i′(hh(h)) = i′(γ(h)) = (γ(h), e), so the first condition is met. For the second condition, we need

q′ ◦ hg = hk ◦ q. This is met because q′(hg(h, k)) = q′(γ(h), k) = k and hk(q(h, k)) = hk(k) = k. Finally,

we note that (e,K) ⊂ G trivially is mapped by δ to (e,K) ⊂ G′. Once again, we’ve established that a specific
isomorphism class and RSG-class are involved.

– Prop 6.19: Given two isomorphic SES’s e → A
f−→ B

g−→ C → e and e →
A′ f ′−→ B′ g′−→ C ′ → e and a given RSG class for that isomorphism class, we saw
that we have corresponding external views. These can be expressed in terms of
a common H and K and two distinct ϕ’s, and those ϕ’s are in the same PA-class
(i.e. related as in Prop 6.10).

Pf: Without loss of generality, we can consider core normal/quotient SES’s, e → N
i−→ G

q
−→ G/N → e

and e → N′ i′−−→ G′
q′
−−→ G′/N′ → e. The RSG class is a choice of suitable X ⊂ G (with corresponding

choice X′ ⊂ G′ under any SES-isomorphism). [We call it X because we’ll use K for a different purpose.] Sup-

pose we pick a specific SES-isomorphism h = (hn, hg, hq) s.t. i′ ◦ hn = hg ◦ i and q′ ◦ hg = hq ◦ q.

Then X′ = hg(X). The corresponding external-view to the first SES via Prop 6.16 is H ≡ N, K ≡ X, and

ϕk(n) ≡ knk−1. Similarly, the second corresponding external-view is H′ ≡ N′, K′ ≡ X′ = hg(X), and

ϕ′
k′ (n

′) ≡ k′n′k′−1. Our goal isn’t merely to show the two external-view constructions are isomorphic (we al-

ready know that), but rather to exhibit an α ∈ Iso(K′, K) and γ ∈ Iso(H,H′) s.t. ϕ and ϕ′ are related as in

Prop 6.16. We have two obvious candidates: α = (hg|K )−1 (or, equivalently because of the SES-isomorphism

relations, α = (q|K )−1 ◦ h−1
q ◦ (q|

K′ )) and γ = hn. Let’s see if these work. Let ϕ′′ be the fully-transformed

ϕ. I.e., ϕ′′
k′ (n

′) = γ(ϕ
α(k′)(γ

−1(n′))). This is just γ(α(k′) · γ−1(n′) · α(k′)−1). Note that we cannot ap-

ply γ to each separately because the domains are incompatible (we only can apply γ to an element of H = N,
which the conjugate expression is but not the individual components of it). The expression can be rewritten

hn((hg|K )−1(k′) · h−1
n (h′) · ((hg|K )−1(k′))−1) (where on the right end, one inverse is an isomorphism in-

verse and the other is a group-multiplicative inverse). Having moved ϕ to ϕ′′ on H′ and K′, we now can com-

pare apples with apples: specifically, ϕ′ and ϕ′′. Ideally, they are equal — but it also is fine if they are related

by automorphisms of H′ and K′ via Prop 6.16. Note that (hg|K )−1(k′) is just h−1
g (k′) (since k′ ∈ hg(K))

and h−1
n (h′) = h−1

g (h′) since hg|N = hn. I.e., we have hn(h−1
g (k′) · h−1

g (h′) · h−1
g (k′)−1). *These* can

be combined to hn(h−1
g (k′h′k′−1)). But k′h′k′−1 ∈ N′, so h−1

g (k′h′k′−1) = (hg|N )−1(k′h′k′−1) =

h−1
n (k′h′k′−1). We then have ϕ′′

k′ (n
′) = hn(h−1

n (k′h′k′−1)) = k′nk′−1. I.e., ϕ′ = ϕ′′. We don’t need

any automorphisms since they are actually equal.

– We thus have seen that (i) for a fixed H and K, any two ϕ’s in the same PA-class
correspond to isomorphic right-splitting SES’s with the same RSG-class and (ii)
for isomorphic right-splitting SES’s with K’s in the same RSG-class, we have
isomorphic external-view constructions with the same H and K and ϕ’s in the
same PA-class. I.e., the freedom of ϕ modulo PA-class is the same as the freedom
of right-splitting SES-isomorphism class modulo RSG-class. I.e., all three views
stated this way have the same information content.

– Between these two propositions, we see that the PA-classes and RSG-classes
really have the same information. To show that the remaining freedom in ϕ is
the same as the remaining SES-view or internal-view freedom, let’s show that the
round-trips are identity. I.e., our procedures for going external-view to SES-view
and back are inverses.

• Prop 6.20: If we start with an internal-view semidirect product, then map it to an
external-view one via Prop 6.15 and them map it back via Prop 6.17 (which really
means mapping it to an SES-view one via Prop 6.14 and then to an internal-view one
via Prop 6.13), we get the same internal-view semidirect product (modulo the type of
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automorphism of Prop 6.11), or equivalently modulo the element of the RSG-class.
Pf: Start with some (G,N,K) satisfying the internal-view requirements. Prop 6.15 maps this to external view

(H′, K′, ϕ′) given by H′ = N, K′ = K and ϕ′k(n) ≡ knk−1. We know that this N ⋊
ϕ′ K ≈ G. Prop 6.13) then

maps this to an SES e → N
i−→ N ⋊

ϕ′ K
q
−→ K → e, where i(n) = (n, e), q(n, k) = k and the right-split subgroup is

(e,K). Prop 6.11 then takes us back to G′′ = N ⋊
ϕ′ K, N′′ = (N, e), and K′′ = (e,K). N′′ ∩ K′′ = {e} trivially.

From the SES, we already know that (N ⋊
ϕ′ K)/(N, e) ≈ K. Since the right-split subgroup of the SES is (e,K), the

right-split map is (q|e,K )−1. I.e., j(k) = (e, k). Since q|(e,K) is an isomorphism, we do indeed have an internal-view.

We thus end up with G′′ ≡ N ⋊
ϕ′ K, K′′ ≡ (e,K) ⊂ G′′, and N′′ ≡ (H, e) ◁ G′. As seen in Prop 6.15, we can define

an isomorphism G′′ → G via (n, k) → n · k. This restricts to isomorphisms (n, e) → n and (e, k) → k, thus recover-

ing the original N and K. I.e., the resulting G′′ is isomorphic to the original G in a way which restricts to isomorphisms
between K′′ and K and between N′′ and N. We thus recover our original inner-product (SES-isomorphism) and RSG-
class.

• Prop 6.21: If we start wth an external-view semidirect product, then map it to
an internal-view one via Prop 6.17 (which really means mapping to the SES-view
via Prop 6.14 and then to the internal-view via Prop 6.13) and then map it back to
the external-view via Prop 6.15, we get what we started with (modulo the type of
isomorphism described in Prop 6.10).

Pf: We start with H,K, ϕ. Let G ≡ H ⋊ϕ K. From Prop 6.14, this becomes the SES e → H
i−→ G

q
−→ K → e,

where i(h) = (h, e) and q(h, k) = k, and the right-split map is j(k) = (e, k) (with right-split group (e,K)). From

Prop 6.13, we get the internal-view G′ ≡ G, N′ ≡ (H, e), K′ ≡ (e,K). From Prop 6.15, we get the external-view

H′′ ≡ N′ = (H, e), K′′ ≡ K′ = (e,K), and ϕ′′
k′′ (h

′′) ≡ k′′n′′k′′−1. From Prop 6.15 we also know we have an

isomorphism γ : G′′ → G′ via γ(h, k) ≡ hk. However, h ∈ N′ = (H, e) and k′ ∈ K′ = (e,K) and multiplication is

in G′ = G. I.e., it is γ(h, k) = (h, e)(e, k) where the latter multiplication is in G′. But G′ = G, so γ is an isomorphism

between H′′ ⋊
ϕ′′ K′′ and H ⋊ϕ K, given by γ(h, k) = (h, e)(e, k) = (ϕk(h), k) (since the multiplication takes place

in G′ = G). Note that we can write H′′ ⋊
ϕ′′ K′′ = H ⋊

ϕ′′ K′′ because γ|(H,e) = Id(H,e) and γ|(e,K) = Id(e,K),

so we end up with the same H and K we started with. Since γ(h, k) = (hϕk(h), k). It may not look like it, but ϕ and

ϕ′ actually are the same. As mentioned earlier, (e, k)(h, e)(e, k)−1 = (ϕk(h), e) by applying the multiplication rule on
G. I.e. ϕk(h) is just conjugacy of h by k. This isn’t a surprise, since we built the multiplication on G so that it would

be. However, it tells us that ϕ′′ is just another way of writing ϕ. We thus get back exactly the original external-view
semidirect product.

• Note that, from the definition of the direct product in the different views, we see that
the direct product is just a type of semidirect product. In the external-view it has
ϕk = IdH for all k ∈ K, in the internal-view it has K ◁ G, and in the SES-view it
left-splits.

There are a few important things to note about the semidirect product:

• The various semidirect products of H and K may be isomorphic to one another, but
in general need not be. I.e., a given H and K may have multiple distinct semidirect
products. This actually happens.
Wikipedia mentions that there are 4 non-isomorphic semidirect products of C8 and C2 (the former being the normal
subgroup in each case). One is a Direct Product, and the other 3 are not.

• It also is possible for a given group G to arise from several distinct semidirect products
of different pairs of groups.
Again from Wikipedia, there is a group of order 24 which can be written as 4 distinct semidirect products of groups.

• The multiplication defined in the external view may seem very strange and unintuitive.
In essence, here is what’s happening: for a direct product, H and K are independent
of one another. Each half of the pair (h, k) acts only on its own group. For a semidirect
product, the non-normal half (K) can twist the normal half (H). Each element of K
can alter H in some prescribed fashion, embodied in ϕ(k). So K is unaffected by H
but H can be twisted by K. This is directly evident in the (easily verified) conjugation
relation (e, k)(h, e)(e, k)−1 = (ϕk(h), e).

• The basic idea of a semidirect product is similar to that of a fiber bundle. In the latter,
a fiber twists (via a group of homeomorphisms) as we move around the base space.
Here, the normal subgroup twists via automorphisms as we move around the non-
normal part. Each generalizes a direct product (one of groups, the other of topological
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spaces) and measures our need to depart from it. The two are closely related, but this
relationship will be discussed in a different set of notes.

• Prop: A semidirect product of two groups is abelian iff it is a direct product and the
subgroups are abelian.
Pf: This is easiest seen in the internal-view. If G is abelian, every subgroup is normal (since gkg−1 = k for all g ∈ G
and k ∈ K) so we have a direct product. Every subgroup of an abelian group also is abelian. Going the other way, a
direct product is a semidirect product where K happens to be normal. A direct product of abelian groups trivially is
abelian.

See https://math.stackexchange.com/questions/425062/can-the-semidirect-product-of-two-groups-be-abelian-group for discussion.

7 Group Extensions

We saw that a direct product is a particular type of semidirect product, one in which (i)
ϕ maps all of K to IdH (external view), or (ii) both N and Q are normal subgroups of
G (internal view), or (iii) the SES left-splits rather than just right-splitting (SES-view).
Similarly, a semidirect product is a particular type of group extension.

Group extensions are the most general form of this type of construction, and similarly can
be described in terms of an external view, an internal view, and an SES view. In fact, a more
efficient treatment of the subject would have begun by defining group extensions, deriving
the associated multiplication and properties (as we do in the addendum), and only then
discussing the special cases which correspond to semidirect products and direct products.

However, efficiency need not comport well with clarity. Most physicists are intimately famil-
iar with direct products and have some interaction with semidirect products (whether aware
of it or not) but have little experience with general group extensions. The point of these
notes is to remedy this, not to provide a maximally concise treatment for mathematicians.

To this end, we began by reviewing general topics such as normal subgroups and short exact
sequences, then proceeded to the familiar cases of direct products and semidirect products,
and finally arrived at general group extensions. In doing so, there has been much replication
of effort. However, that is a small cost for comprehensibility.

A group extension is:

• External view: A general way of constructing a group from two other groups in a
manner which creates a normal/quotient relationship. We’ll see the explicit form of
this momentarily.

• Internal view: A general normal/quotient relationship.
• SES view: An SES-isomorphism class.

As with semidirect products, the three views are the same up to SES-isomorphism. We’ll
interpret “general” in the external view and internal view as meaning isomorphic in a way
where the isomorphisms are compatible. Since this always comes down to (and is more
elegantly expressed as) SES-isomorphism, we’ll just call it that, even in the context of the
two other views.

The term “group extension” variously is used by people to refer to an individual SES, an
isomorphism class of SES’s, a core normal/quotient SES, the group B in an SES, and the
isomorphism class of group B in an SES.
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Given an SES e → A
f−→ B

g−→ C → e, people generally say that B is an “extension of C by
A”. However, some people adopt the opposite usage and say B is an “extension of A by C”.
See https://terrytao.wordpress.com/2010/01/23/some-notes-on-group-extensions/
for a discussion of some such conventions.

The equivalence of the three views is mostly trivial in light of results we’ve already discussed
involving SES’s and normal/quotient relationships, but we’ll state them below anyway.

However, first we must formalize the external view. The explicit construction of the multi-
plication on a group extension is a bit involved, so we’ll relegate that to the addendum. At
present, we’ll just state the result obtained there.

• Prop 7.1: : Let H and K be groups and let η : K → Aut(H) and ν : K ×K → H
be maps (not homomorphisms) s.t. (a) η(e) = IdH , (b) ν(k, e) = ν(e, k) = e for all
h ∈ H, (c) ηk(ν(k

′, k′′)) · ν(k, k′k′′) = ν(k, k′) · ν(kk′, k′′) for all k, k′, k′′ ∈ K, and (d)
ηk(ηk′(h)) = ν(k, k′) · ηkk′(h) · ν(k, k′)−1 for all k, k′ ∈ K and h ∈ H. Given these
elements, we can construct a group G s.t. Note that some of the

listed items are direct
consequences of one an-
other. We’re just listing
various relevant proper-
ties of our construction.

– (i) The elements of G are labeled (but not necessarily parametrized) by (h, k).

– (ii) (H, e) ◁ G.

– (iii) i(h) = (h, e) is an isomorphism H → (H, e).

– (iv) K ≈ G/(H, e).

– (v) g(h, k) = k is a surjective homomorphism G → K s.t. ker g = (H, e).

– (vi) (h, k) · (h′, k′) ≡ (h · ηk(h′) · ν(k, k′), kk′) is the multiplication.

–(vii) (e, e) is the multiplicative identity.

–(viii) (h, k)−1 = (ηk
−1(h−1 · ν(k, k−1)−1), k−1) is the inverse (where ηk

−1 is the
inverse of the automorphism ηk).

Note that ηk
−1 is *not* the same as η

k−1 because η : K → Aut(H) is not a homomorphism.

This also can be written (ηk
−1(ν(k, k−1) · h)−1, k−1).

For now, the key takeaway is the multiplication (vi). This looks similar to the semidi-
rect product except that η (the counterpart of the semidirect product’s ϕ) no longer is a
homomorphism and we also have a map ν along with some weird conditions on their inter-
play. Basically, ν tells us how much we deviate from being a semidirect product. It is the
obstruction to the SES right-splitting.

The “external view” of a group extension is precisely the construction just described (and
fleshed out in the addendum). I.e., we are given a suitable H,K,η, and ν, and we construct
G and the attaching maps i and γ.

In terms of this construction, we immediately see that:

• Semidirect product: A semidirect product defined by (external-view) (H,K, ϕ) is a
group extension with (external-view) η = ϕ (now a homomorphism) and ν trivial
(i.e. ν(k, k′) = e for all k, k′ ∈ K).

• Direct product: ν again is trivial, and η now is too. Specifically, ηk = IdH for all
k ∈ K.

As mentioned, most of the equivalence of the three views has already been established in
our earlier discussion, but one has not. For completeness, let’s now list them.
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• Prop 7.2: : An SES-view group extension gives rise to an internal-view one.

Pf: We saw in Prop 3.8 and Prop 3.13 that an SES e → A
f
−→ B

g
−→ C → e is isomorphic to its derived SES’s, including

its core normal/quotient SES. I.e., each SES gives rise to an internal-view group extension via f(A) ◁ B. Different SES’s
in the isomorphism class may have different core normal/quotient SES’s but the latter all are SES-isomorphic. I.e., N ≈
N′ and G ≈ G′ and G/N ≈ G′/N′ *and* we can pick three compatible isomorphisms. This compatibility is just SES-
isomorphism between the corresponding core normal/quotient SES’s, and is best expressed that way even in the context
of the internal-view.

• Prop 7.3: : An internal-view group extension gives rise to an SES-view one.
Pf: From Prop 3.13 we know that all SES’s with N ◁G as its core normal/quotient relation are SES-isomorphic. We then

can expand to the entire SES-isomorphism class. Every choice of N′ ◁G′ s.t. N′ ≈ N and G′ ≈ G and G′/N′ ≈ G/N in
a compatible way just gives rise to an SES-isomorphic core normal/quotient SES.

• Prop 7.4: : An external-view group extension gives rise to an internal-view one.
Pf: From Prop 7.1, (H, e) ◁ G. We then extend both sides to SES-isomorphism classes, of course.

• Prop 7.5: : An external-view group extension gives rise to an SES-view one.
Pf: From Prop 7.1, (H, e) ◁ G. This gives rise to a core normal/quotient SES, which we then extend to an SES-

isomorphism class. Equivalently, we could define the SES e → H
i−→ G

γ
−→ K → e, with G the group resulting from

the construction of Prop 7.1 and with i(h) = (h, e) the inclusion map and γ(e, k) = k the combined quotient/attaching
map for K, and then expand this SES to an SES-isomorphism class.

• Prop 7.6: An internal-view group extension gives rise to an external-view one.
Pf: Given N ◁ G, we define H ≡ N and K ≡ G/N. To come up with η and ν, we’ll use some of the tactics
from the addendum. Pick a section u (i.e. u : G/N → G s.t. q ◦ u = IdG/N ) s.t. u(e) = e. Note that u

is a map, not a homomorphism (if it was a homomorphism, we would have a semidirect product). Define ηk(h) ≡
u(k) · h · u(k)−1 and ν(k, k′) ≡ u(k) · u(k′) · u(k · k′)−1 (where all the multiplication takes place in G and
G/N, which we are given). To see that η is a map K → Aut(H), we observe that ηk is the restriction of an inner-

automorphism of G to H and thus is an automorphism of H (since H is normal in G). To see that ν(k, k′) ∈ H,

we’ll show that q(ν(k, k′)) = e. q(u(k)u(k′)u(kk′)−1) = q(u(k))q(u(k′))q(u(kk′))−1 because q is a homomor-

phism, but q ◦ u = IdK , so this is just k · k′ · (kk′)−1 = e. Therefore, ν(k, k′) ∈ q−1(e) = H. Next,
let’s confirm that the requirements (a-d) of Prop 7.1 are satisfied. (a) Since u(e) = e, ηe = IdH trivially. (b)

ν(k, e) = u(k)u(e)u(k · e)−1 = u(k)u(k)−1 = e and ditto for ν(e, k). (c) ηk(ν(k′, k′′)) · ν(k, k′k′′) =

u(k)u(k′)u(k′′)u(k′k′′)−1u(k)−1u(k)u(k′k′′)u(kk′k′′)−1, which reduces to u(k)u(k′)u(k′′)u(kk′k′′)−1. On

the other hand, ν(k, k′)ν(kk′, k′′) = u(k)u(k′)u(kk′)−1u(kk′)u(k′′)u(kk′k′′)−1, which also reduces to

u(k)u(k′)u(k′′)u(kk′k′′)−1. (d) u(k)u(k′)hu(k′)−1u(k)−1 on the left and ν(k, k′)u(kk′)hu(kk′)−1ν(k, k′)−1

on the right. The latter expands to u(k)u(k′)u(kk′)−1u(kk′)hu(kk′)−1u(kk′)u(k′)−1u(k)−1, which reduces to

u(k)u(k′)hu(k′)−1u(k)−1. We thus have satisfied all the prerequisites, and Prop 7.1 constructs a group G′, whose el-

ements are labeled via (h, k). Define hg : G′ → G via hg(h, k) ≡ h · u(k). Then hg(e, e) = e (since u(e) = e) and

hg((h, k)(h′, k′)) = hg((hηk(h′)ν(k, k′)), kk′) = hηk(h′)ν(k, k′)u(kk′) = hu(k)h′u(k)−1u(k)u(k′)u(kk′)−1u(kk′) =

hu(k)h′u(k′). On the other hand, hg(h, k)hg(h′, k′) = hu(k)h′u(k′). So hg((h, k)(h′, k′)) = hg(h, k)hg(h′, k′) and

we have a homomorphism. To see that hg is injective, first observe that if hu(k) = h′u(k′) then q(hu(k)) = q(h′u(k′))
so q(h)q(u(k)) = q(h′)q(u(k′)) and e · k = e · k′, so k = k′. But then u(k) = u(k′) so h = h′. To see that hg is surjec-

tive, pick a g. Let q(g) = k and let h = g · u(k)−1 (which is in H since q(g · u(k)−1) = q(g) · q(u(k)−1) = k · k−1 = e).

[Note that u(k)−1 and u(k−1) are in the same coset but need not be the same element. We only used the former.]
Then g = h · u(k). So hg is a bijective homomorphism and thus an isomorphism. hg(h, e) = h and hg(e, k) = u(k).
This is an SES-equivalence (i.e. hn = IdN and hq = IdG/N ). Why the latter when we have hg(e, k) = u(k)? Be-

cause K just labels the group G/N and (e,K) just labels the quotient group G′/(H, e). Viewed as the same group (i.e.

(e,K) = K), the relevant hq : K → K is given by IdK . Bearing in mind that hg takes us from G′ to G (the opposite of

our usual convention), this makes the quotient commute: q ◦ hg = hq ◦ q′, which becomes q(hg(h, k)) = hq(q′(h, k)).
The right side is IdK (k) = k and the left side is q(hu(k)) = q(h)q(u(k)) = ek = k. So we have an SES-equivalence and
the external-view construction does indeed correspond to our internal-view one.

Note that the choice of section u is arbitrary. We’ll see in the addendum that a different u′ gives a different η′ and
ν′, and the same multiplication on the constructed G′ looks quite different in terms of these. However, that does not
apply here. We are choosing a section of G, not of our constructed G′, and *then* constructing G′ and showing SES-
equivalence. Put another way, we can think of each choice of u as a choice of labeling for pts in G via (h, k). The coset
always is labeled with the relevant k, so that’s the same regardless of our choice of u. Within each coset, we don’t have
complete latitude to label elements (via the h part of the (h, k) pair), but rather may choose a single reference element
to correspond to (e, k). I.e., we have a choice of section of G. We then *define* this section to be labeled (e, k) and the
rest follows.

• Prop 7.7: An SES-view group extension gives rise to an external-view one.
Pf: We just use Prop 7.2 to go to the internal-view and Prop 7.6 to go to the external view.

7.1 Central Extensions Revisited.

We earlier defined a “central” extension in terms of SES’s. As we now know, an SES is just
a group extension, so the reason for the name should be clear. Let’s consider the definition
from the three vantage points.
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• SES-view: A central extension was defined as an SES e → A
f−→ B

g−→ C → e where
f(A) not only is normal in B but lies in its center (i.e. f(A) ⊆ Z(B)). Obviously, this
requires that A be abelian.

• Internal-view: A central extension is a normal/quotient relation in which N is in the
center of G (i.e., N ⊆ Z(G)). This constrains G/N , of course.

• External-view: A central extension is constructed from H and K just like for an
ordinary group extension, but with the further constraint during construction that
(H, e) ⊆ Z(G). Obviously, this requires that H be abelian. It also constrains the
admissible η and ν.
Every η and ν which satisfy the original constraints of the theorem give rise to a group extension. However, only some

(or none) of these give rise to central extensions. For a central extension, ηk = IdH for all k ∈ K (since u(k)hu(k)−1 =

u(k)u(k)−1h for h ∈ H ⊆ Z(G)). The first constraint becomes ν(k′, k′′)ν(k, k′k′′) = ν(k, k′)ν(kk′, k′′) and the 2nd is
trivially satisfied. We thus can say that if H is abelian and we are given a ν : K ×K → H s.t. ν(k, e) = ν(e, k) = e and

ν(k′, k′′)ν(k, k′k′′) = ν(k, k′)ν(kk′, k′′) we have a central extension (with η automatically generated as trivial) via our
construction.

7.2 Classification of Group Extensions

One key problem is to identify all the group extensions of C by A (or possibly of C by
anything). I.e., we want to classify the distinct SES-isomorphism classes of the form e →
A

f−→ B
g−→ C → e (or possibly of the form e → Anything

f−→ B
g−→ C → e).

It turns out this can be done via the 2nd (in the case of central extensions) or 2nd and 3rd
(in the case of general extensions) group cohomologies. Group cohomology is a cohomology
theory, but a non-topological one. This is a topic for another time, but here’s a brief
summary.

Given a group G, a left G-module M is an abelian group (ex. a free abelian group generated
from some set) along with a group action of G on M . I.e., it’s like an ordinary module,
but instead of coefficients drawn from a ring they are drawn from a group. Since, unlike
a ring, the group G need not be abelian, this is a generalization of an R-module. Given a
G-module M , define Cn(G,M) to be the abelian group of all fns from Gn → M ..
I.e. Cn(G,M) consists of all fns of the form f(g1, . . . , gn) producing values in M. It is an abelian group under the operation
(f + g)(g1, . . . , gn) ≡ f(g1, . . . , gn) + g(g1, . . . , gn), where the right-side addition is in M.

We can define a purely algebraic map d(n+1) : Cn(G,M) → C(n+1)(G,M) which satisfies
d(n+1) ◦ dn = 0. This is a cochain complex, and thus gives rise to a cohomology theory via
Hn(G,M) ≡ ker d(n+1)/Im dn. It is these cohomology groups which are encountered when
classifying SES’s, rather than anything topological.
We say ”cochain complex” and ”cohomology theory” rather than ”chain complex” and ”homology theory” solely because of the
notational direction of the arrows d. This affects nothing, and is merely a matter of nomenclature.

Explicitly, d is defined as follows. Given fn ϕ : G × · · · (ntimes) · · · × G → M (i.e. ϕ ∈ Cn(G,M)), we define

(dn+1ϕ)(g1, . . . , gn+1) ≡ g1ϕ(g2, . . . , gn+1)+
∑n

i=1(−1)iϕ(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1)+(−1)n+1ϕ(g1, . . . , gn).

Note that (−1)i is shorthand for + or − (addition of what follows or of its additive-inverse) according to whether i is even or
odd. There is no multiplicative unit element 1 in M (it is not a group under multiplication).

• If H is abelian then H2(K,H) classifies the (isomorphism classes of) central extensions
of K by H.

• H2(K,Z(H)) and H3(K,Z(H)) together can be used to classify the (isomorphism
classes of) general extensions of H by K.
The 2nd applies even if H is abelian (and thus Z(H) = H). It is quite possible to have abelian non-central extensions of

K by H. In that case, H2(K,H) classifies the central extensions but we also need H3(K,H) to classify the non-central
extensions.

Note that we’re quietly upgrading H or Z(H) to a G-module here and have glossed over a great deal. This is a very
quick summary and not meant to be thorough. We’ll return to this topic in excruciating detail in a future post.
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The study of SES’s and group extensions (as well as group cohomology) isn’t found in most algebra textbooks. It tends
to appear in treatments of ”homological algebra”, though often obscured by category-theory jargon and notation involv-
ing ”tor” and ”ext” functors, etc.

For the general case, the details are spelled out in Eilenberg and Maclane’s original paper ”Cohomology Theory in Ab-
stract Groups. II: Group Extensions with a non-Abelian Kernel”, Annals of Mathematics, Vol 48, No. 2, Apr, 1947.

8 Summary: Direct Products, Semidirect Products, and
Group Extensions

Let’s review the status of these three constructions from the three viewpoints we’ve dis-
cussed. As we saw, the direct product is unique and a type of semidirect product, and each
semidirect product is a type of general group extension.

The external view involves construction of a group G from groups H and K. This can be
regarded as an operation.

• Direct Product: G = H ⊕K is the obvious pairwise construction.
• Semidirect Product: G = H ⋊ϕ K constructed using homomorphism ϕ. There may
be multiple of these, corresponding to different ϕ’s.

• Group Extension: A group G, constructed as set out in the addendum using suitable
maps η and ν. There may be multiple of these, corresponding to different η’s and ν’s.

The internal view considers the relationship between an existing group G and one or more
normal subgroups.

• Direct Product: G = N1 ⊕ N2 involves two disjoint normal subgroups such that
G = N1N2.

• Semidirect Product: G = N ⋊ K involves a normal subgroup N ◁ G and a disjoint
subgroup K ⊂ G s.t. G = NK.

• Group Extension: Involves just a single normal subgroup N ◁ G.

The SES view considers three groups related by an SES.

• Direct Product: An SES that left-splits (and thus also right-splits).
• Semidirect Product: An SES that right-splits.
• Group Extension: An SES.

We’re being loose in our descriptions here. As we saw, these definitions technically involve
SES-isomorphism classes. We can caveat each definition via “modulo SES-isomorphism”.

9 Addendum: The Multiplication in a Group Extension

We’ll somewhat follow the treatment in The Encyclopedia of Math at https://encyclopediaofmath.org/wiki/Extension_of_a_group.

We saw that a group extension is just an SES-isomorphism class. Let’s consider two distinct
but equivalent (modulo SES-isomorphism) questions:
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• Q1: Given groups A and C, how can we construct a SES e → A
f−→ B

g−→ C → e? I.e.,
what choices of B, f , and g would give us one?
We also may wish to know (i) which choices lead to isomorphic B’s and (ii) which subset of these choices lead to equiva-
lent SES’s. Note that this isn’t the difference between isomorphic and equivalent SES’s. As discussed earlier, it is quite
possible to have the same A and C and isomorphic B’s (call them B and B′), but not an SES-isomorphism (let alone

SES-equivalence) because no isomorphism between B and B′ makes the diagram commute. We thus have three situa-

tions in which B ≈ B′: (i) there may be an isomorphism α : B → B′ s.t. f′ = α ◦ f and g = g′ ◦ α, in which case
we have an SES-equivalence, (ii) this may be too strict but there may be automorphisms ha and hc and an isomorphism

hb : B → B′ s.t. f′ ◦ ha = hb ◦ f and g′ ◦ hb = hc ◦ g, in which case we have an SES-isomorphism, (iii) there may

be no ha, hb, and hc which make the diagram commute, in which case B ≈ B′ but there is no SES-isomorphism or SES-
equivalence.

• Q2: Given any H and K, how can we construct a group G where H is isomorphic to
a normal subgroup of G and K is isomorphic to the corresponding quotient group?

Up to SES-isomorphism, Q1 is the same as asking how many ways we can build a core
normal/quotient SES. We then can obtain any other SES in the isomorphism class via
attaching maps to one of those core normal/quotient SES’s. Q2 is in fact answered by
addressing this very form of Q1. We’ll use the latter notation.

First, let’s map out the basic structure of G.

• Prop 9.1: The normal/quotient relationship requires that setwise G = H ×K. I.e.,
the points in G can be labeled (h, k).
But bear in mind our earlier warnings about labeling vs parametrizations. This is just a labeling. We are making no
claims about G resembling H ×K topologically or in any other regard.

Pf: Given any group G and N ◁ G, G setwise is ∪i∈G/NN. I.e., setwise G consists of |G/N| copies of N (one for each

coset). We’re just using k to label the cosets and h to label the point in the coset (*but* with no cross-coset uniformity
of meaning to this h label!). All the meaning will be expressed through our definition of multiplication on G.

• We’ll earmark the set (H, e) as our normal subgroup and accordingly choose the at-
taching map f to be the inclusion i(h) = (h, e).
Since we’re labeling the cosets by k, we’re just picking (H, e) as the identity coset. Of course, we’ll have to ensure that
any multiplication we pick on G will make (H, e) normal in G. This will constrain us, but we would be equally con-
strained if we chose some other subset of G to be normal. I.e., we lose no generality, and this is just a convenient label-
ing.

• Prop 9.2: The constraint that i be an injective homomorphism to G (under whatever
multiplication we impose on G) implies that the full group multiplication on (H, e) is
defined by (e, e) being the identity and (h, e)(h′, e) = (hh′, e).
Pf: This just follows from the definition of a homomorphism. i trivially is injective from H to G, and its image is (H, e),
so it is an isomorphism to (H, e). Therefore, (H, e) must have the same exact multiplication as H.

– Prop 9.3: (H, e) is a subgroup of G, and (h, e)−1 = (h−1, e).

Pf: We could just use the fact we’re isomorphic to H, but let’s do it explicitly. Let (h, e)−1 = (h′, e). Then

(hh′, e) = (e, e), so h′ = h−1.

• Prop 9.4: Given the construction so far, the identity on G is (e, e).
Pf: i(e) = (e, e) must be the identity on (H, e) since i is a homomorphism from H to (H, e) Suppose there is some

(h, k) ∈ G s.t. (h, k)(h′, k′) = (h′, k′) for all (h′, k′) (i.e. (e, e) doesn’t extend as the identity to all of G). Obvi-
ously, k ̸= e or we’d have two identities in (H, e). What about outside of (H, e)? That won’t work either. By (ii), (H, e)
is required to be a subgroup of G. The identity on G must be an element of every subgroup of G.

• Prop 9.5: Given the constraints (i) (H, e)◁G and (ii) K ≈ G/(H, e) under whatever
multiplication we adopt for G, we can define a surjective homomorphism γ : G → K.
Pf: Suppose we are given a multiplication on G for which those two conditions hold. Since K ≈ G/(H, e), ∃ an iso-
morphism α : G/(H, e) → K. Any such α indexes our cosets by K. Let q be the canonical quotient homomorphism
G → G/(H, e). Define γ : G → K to be α ◦ q. Of course, different choices of α give different γ’s. Note that this whole
construction depends on the multiplication we impose on G. We’re just deriving a consequence of the constraints on that
multiplication.

• Prop 9.6: (H, e) ◁ G is equivalent to the existence of a surjective homomorphism
γ : G → K with ker γ = (H, e).
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Pf: Given a multiplication on G s.t. (H, e) ◁ G, ker q = (H, e) by the definition of the quotient homomorphism q :
G → G/(H, e). The kernel of any isomorphism α : G/(H, e) → K is e, so ker γ = ker q = (H, e) holds regardless of
the specific choice of α (and thus γ). Going the other way, given a surjective homomorphism γ with ker γ = (H, e), the
First homomorphism thm tells us that ker γ ◁ G, so (H, e) ◁ G.

It is important to observe here that, unlike (H, e), the set (e,K) is *not* a subgroup of G in general. We certainly have
a bijective map K → (e,K). But it is not a homomorphism in either direction. γ is a homomorphism from G to K,
but it need not restrict to a homomorphism on (e,K). To do so, we not only need some section of G to be a copy of
K (i.e. we need a semidirect product) but that this section happens to be (e,K). As we will see, our multiplication on

(h, k)(h′, k′) will end up taking the form (something, kk′). This may seem to contradict what we just said about not

necessarily having a copy of K in G, but it actually doesn’t. A copy of K exists iff (e, k)(e, k′) = (e, kk′) for all k, k′.
Though the 2nd element is indeed kk′, the first need not be e. I.e. (e, k)(e, k′) = (not − e, kk′) in general. In the case

of a semidirect product it is e (since (e, k)(e, k′) = (eϕk(e), kk′) = (e, kk′)). For a general group extension it is not.
This is a very important distinction to keep in mind. Again, γ is a homomorphism G → K, but does not restrict to one
on (e,K) → K because (e,K) is not necessarily a subgroup of G. This will be apparent as we proceed with the con-
struction.

• Prop 9.7: The cosets are of the form (H, k).
Pf: Since we have an isomorphism (and hence bijection) between the group of cosets (i.e. G/(H, e)) and K, the cosets
are labeled by elements of K. Of course, this doesn’t mean α maps (H, k) to k. We’ve used K (along with H) for label-
ing points in the group G we are constructing but have imposed no constraint on how they match up to the elements of
the group K. All we really have said is that the quotient relation slices G into things of the form (H, k). Different α’s
will match them up in different ways, and none need project out the second element (i.e. map (H, k) to k). Put another
way, γ(h, k) need not equal k. Nor need there exist an automorphism on K which fixes this. However, this is a specious
concern because our labeling of cosets is arbitrary to begin with. We’re free to choose a labeling that suits our needs
and makes the labels align for whatever choice of α we employ.

• Prop 9.8: We always can choose, without loss of generality, γ(h, k) = k as our SES
homomorphism.
Pf: We saw that the cosets are of the form (H, k) but that the homomorphism α need not take (H, k) to k. However,
the k in (h, k) is just a label. We can relabel things so that the coset labels *do* match up. This changes the labeling
of the multiplication of elements in G — but crucially does not affect multiplication on (H, e) or the normality of (H, e)
relative to the multiplication. I.e., we always can choose our labeling so that each coset [k] is labeled by k rather than

some other k′. We lose no generality doing so. Note that this choice of labeling and γ corresponds to the obvious α :
G/(H, e) → K given by α([k]) = k.

Note that for any choice of α, there is a labeling which makes things match up — but it differs between α’s. If we pick a
different α, our results are related by an automorphism of K. The core normal/quotient relation is unaffected but the
labeling no longer aligns. We can choose our labelings to be whatever we want (they needn’t be related by automor-
phisms or anything else). Those for which an α exists s.t. α([k]) = k are related by automorphisms of K. In those cases,
choosing that α simplifies the notation a lot. However, we may still use a different α or a labeling which has no associ-
ated α. This is perfectly valid, but makes the bookkeeping very messy.

Since we can do so without loss of generality, we’ll assume we’ve chosen a labeling of cosets
for which there is an associated α and that we are using this α and its γ = α ◦ q. I.e.,
α([k]) = k and γ(h, k) = k.

• Prop 9.9: Given our choices so far, the multiplication on G must be of the form
(h, k)(h′, k′) = (m(h, k, h′, k′), kk′) for some function m, and the inverse on G must
be of the form (h, k)−1 = (j(h, k), k−1) for some function j.
Pf: The most general conceivable form for multiplication is (h, k)(h′, k′) = (m1(h, k, h′, k′),m2(h, k, h′, k′)). As
mentioned, the cosets are of the form (H, k) and we chose (without loss of generality) our labeling so that α has the
form α([k]) = k. With this labeling, the multiplication on the cosets matches that on K (via label) directly. I.e.

γ((h, k)(h′, k′)) = γ(h, k) · γ(h′, k′) = k · k′. But γ((h, k) · (h′, k′)) = γ(m1(h, k, h′, k′),m2(h, k, h′, k′)) =

m2(h, k, h′, k′). So m2(h, k, h′, k′) = k · k′. The most general form of the inverse is (h, k)−1 = (j1(h, k), j2(h, k)).

By similar reasoning, γ((h, k)−1) = γ(h, k)−1 = k−1. But γ((h, k)−1) = γ(j1(h, k), j2(h, k)) = j2(h, k), so

j2(h, k) = k−1.

• Let’s summarize the general landscape for G so far:

– Setwise G = H ×K
– We then ask what multiplications we can impose on G s.t. H is isomorphic to
some normal subgroup of G and K is isomorphic to the corresponding quotient
group. We do so by assuming a multiplication on G and then determining the
necessary consequences.

– Our SES “f” map is chosen (without loss of generality) to be i(h) = (h, e),
declaring our normal subgroup to be (H, e).

– i is an isomorphism H → (H, e), from which we know the multiplication on (H, e)
as a subgroup of G.

– (e, e) is the identity on G.
– The cosets are labeled by (H, k) (but not necessarily with the label k matching
up to the corresponding k ∈ K under any isomorphism).
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– Our normality requirement amounts to ker γ = (H, e) (for the SES map γ), where
γ = α◦q (for q the quotient map G → G/(H, e) any isomorphism α : G/(H, e) →
K).

– For any choice of isomorphism α, our SES “g” map is chosen (without loss of
generality) to be γ(h, k) = k.

– For any isomorphism α : G/(H, e) → K there is a coset-labeling s.t. α([k]) = k
(and thus γ(h, k) = k). Whatever α we pick, we’ll assume this associated labeling.

– (h, k)(h′, k′) = (something, kk′)
– (h, k)−1 = (something, k−1).

What about the dependence on α? It turns out this makes no difference.

Prop 9.10: If we choose a different α, the resulting group extension is SES-isomorphic.
Pf: We could go through a lot of rigamarole to exhibit a specific isomorphism, but there is no need. Any two isomorphisms
α and α′ are related by an automorphism on K. We saw earlier that such an attaching map doesn’t change the core nor-
mal/quotient SES. More formally, we have an SES-isomorphism (not SES-equivalence) with the same H, K, G, and i. Only the

γ’s differ (and crucially, their kernels do not). So pick hh = IdH , hg = IdG, and hk = γ′ ◦ γ−1 = α′ ◦ α−1. The diagram
trivially commutes.

We’ve now come as far as we can without picking a specific section of G. Recall that a
section of G is a choice of representative from each quotient class in G/(H, e). Let u be such
a section. Since the classes of G/(H, e) are labeled (via our assumption that the labeling
matches the choice of α) by the corresponding elements of K, u can be written as a map
u : K → G s.t. γ ◦ u = IdK .
Technically the ”section” is a map u′ : G/(H, e) → G s.t. q ◦ u′ = IdG/(H,e), and u is u′ ◦ α−1. However, this is just a matter

of nomenclature and doesn’t matter to us here — especially since our α is trivial due to our choice of labeling. We’ll just refer to
u as a ”section”.

Bear in mind that u is a map, not a homomorphism. In fact, there is no choice of u which is a homomorphism unless the SES
splits (i.e. we have a semidirect product). We’ll be measuring the deviation of u from being a homomorphism, aka the deviation
of G from being a semidirect product.

Also note that our construction is purely algebraic. Unlike for a fiber bundle, there are no notions of ”local” vs ”global” sections
here.

• For convenience, we’ll sometimes write N for (H, e) from now on.

• Given a section u, we have a map η : K → Aut(N), given by ηk(h, e) = u(k) · (h, e) ·
u(k)−1.

–

In our earlier notation, ηk = ϕu(k)|N . As discussed, it is an inner-automorphism of G but just an automorphism

of (H, e) — and that only because we’re requiring (H, e) ◁ G).

– Note that we have several maps involving automorphism-like things :

*

The natural homomorphism G → Aut(N) given by the conjugation maps restricted to N. We called this
α in our earlier discussion of groups (not to be confused with our current usage of α for an isomorphism
G/N → K). It takes g → ϕg|N . This is independent of u.

*

The induced quotient homomorphism G/N → Out(N) given by [x] → [ϕx|N ] (where we bear in mind that
ϕx|N is an element of Aut(N), not Inn(N) — so it isn’t in the identity class of Out(N)). We called it β

in our earlier discussion. We can pull this back to K → Out(N) using the isomorphism α−1 : K → G/N.
This is independent of u.

*

When we pick a section u, we also have the map η : K → Aut(N). Each such ηk is an automorphism on
N, but the set of them is *not* a homomorphism for the same reason (and in fact because) u is not. I.e.

η
kk′ ̸= ηk ◦ η

k′ and η
k−1 ̸= η

−1
k

(map inverse) in general.

• Without loss of generality, we can constrain ourselves to sections with u(e) = (e, e).

There is no loss of generality because we can multiply any existing section u by a constant element u(e)−1 to get a sec-

tion with u′(e) = (e, e).

It may be tempting also to require u(k−1) = u(k)−1. However, this *does* lose us generality because we cannot bijec-
tively construct such a section from any section.
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• Let’s denote the deviation of u from homomorphism by ν. Specifically: u(k)u(k′) =
ν(k, k′)u(kk′). We’ll often write this as ν(k, k′) = u(k)u(k′)u(kk′)−1.
I.e., for a homomorphism, ν(k, k′) = e for all k, k′.

• Prop 9.11: ν(k, k′) ∈ (H, e).
Pf: Because γ is a homomorphism, γ(u(k)u(k′)) = γ(u(k))γ(u(k′)) = kk′ and γ(ν(k, k′)u(kk′)) =

γ(ν(k, k′))γ(u(kk′)) = γ(ν(k, k′)) · (kk′). Since the two are equal, γ(ν(k, k′)) = e, so ν(k, k′) ∈ ker γ = (H, e).

• Since ηk ∈ Aut(N), we’ll often treat it as in Aut(H) and write ηk(h) for i
−1 ◦ ηk ◦ i.

The context will make the choice clear. If it multiplies elements of H it is the latter,
if it multiplies elements of G it is the former.

• Since ν(k, k′) ∈ (H, e), we’ll often treat it as in H. I.e., we’ll write it for i−1(ν(k, k′)).
The context will make the choice clear. If it multiplies elements of H it is the latter,
if it multiplies elements of G it is the former.

•
Some people write kh for ηk(h, e). As with ηk, the dependence on the section is implicit. This can lead to confusing

expressions, such as h1
kh2 for h1 · ηk(h2). We won’t use this notation.

We’ve imposed our SES (i.e. normal/quotient) constraints. Let’s now see what constraints
the group axioms themselves impose when they interact with the normal/quotient machin-
ery. We already have an identity element (e, e), and we’ll see that the inverse-related axioms
don’t actually impose any constraints beyond those already imposed by associativity. There
are two of the latter that any multiplication on G must satisfy, and we’ll see that they not
only are necessary but also sufficient.

• We defined ν to measure the deviation of u from being a homomorphism. Our first
constraint derives from the interaction of ν with associativity.

• Prop 9.12: (Constraint 1): Given a section u and any multiplication onG adhering
to our construction so far, we have ηk(ν(k

′, k′′)) · ν(k, k′k′′) = ν(k, k′)ν(kk′, k′′) for
some choice of ν.
Pf: The left side is ηk(ν(k′, k′′)) · ν(k, k′k′′) = u(k)ν(k′, k′′)u(k)−1ν(k, k′k′′), which expands to

u(k)u(k′)u(k′′)u(k′k′′)−1u(k)−1u(k)u(k′k′′)u(kk′k′′)−1 = u(k)u(k′)u(k′′)u(kk′k′′)−1. The right side is

ν(k, k′)ν(kk′, k′′) = u(k)u(k′)u(kk′)−1u(kk′)u(k′′)u(kk′k′′)−1 = u(k)u(k′)u(k′′)u(kk′k′′)−1, which is the same.

Note that if our multiplication didn’t make (H, e) normal in G or if K ̸≈ G/(H, e), we wouldn’t be able to define a sec-
tion u (it would have no meaning). In that case, not only the proof but the premise itself would be ill-defined.

• We also saw that η deviates from being a homomorphism because u does. This devi-
ation also is determined by ν, as the following proposition dictates.

• Prop 9.13: (Constraint 2): Given a multiplication on G adhering to our construc-
tion so far, we have ηk ◦ ηk′ = ϕν(k,k′) ◦ ηkk′ (where actually ϕν(k,k′) ∈ Inn(N), not
just Aut(N)).

I.e., the deviation from homomorphism is just ϕ
ν(k,k′)(h) = ν(k, k′) · h · ν(k, k′)−1. As elsewhere, we treat this as

taking place in either H or (H, e) as needed.

Pf: ηk(η
k′ (h, e)) = u(k)·u(k′)·(h, e)·u(k′)−1·u(k)−1. On the other hand, ϕ

ν(k,k′)(ηkk′ (h, e)) = ν(k, k′)·η
kk′ (h, e)·

ν(k, k′)−1 = u(k)u(k′)u(kk′)−1u(kk′)(h, e)u(kk′)−1u(kk′)u(k′)−1u(k)−1 = u(k)u(k′)(h, e)u(k′)−1u(k)−1, which
is the same.

Sometimes people write things like k(k
′
h) = ν(k,k′)(kk′h). This technically is incorrect because ν(k, k′) ̸∈ K. What

they really mean is ϕ
ν(k,k′). The Encyclopedia of Math entry for ”group extension” suffers this abuse of notation.

• Why did we label these “constraint 1” and “constraint 2” when they follow from
associativity? As mentioned, they also depend on the premise that (H, e) ◁ G and
K ≈ G/(H, e). I.e., any suitable multiplication must satisfy them. They follow from
associativity plus the normal/quotient premise. As we will see, if we start with an
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abstract ν and η which satisfy these two constraints, we can construct a multiplication
on G which satisfies (H, e) ◁G and K ≈ G/(H, e). I.e., these two properties will prove
sufficient to create a suitable multiplication.
They also depend on our specific labeling choices via the homomorphisms i and γ (via α). However, as mentioned, we
lose no generality in this regard. A different choice of α gives us an SES-isomorphic result, and a different labeling rela-
tive to our α just produces a messier expression of the same constraints.

• What about the group inverse axioms? Are there any consequences analogous to those
of associativity? It turns out there are no new constraints.
Pf: Denote by δ(k) the deviation of u from homomorphism. I.e. u(k)−1 = δ(k)u(k−1). Consider u(k)−1u(k) = e.

This is δ(k)u(k−1)u(k) = e. The left side is δ(k)ν(k−1, k)u(kk−1) = δ(k)ν(k−1, k) (since we posited u(e) = (e, e)).

Our constraint is δ(k)ν(k−1, k) = e, which gives us δ(k) = ν(k−1, k)−1. Any ν gives rise to a suitable δ without any
further constraint.

We currently are bound to a specific section u. Our η is built from it, and our ν derives
from it. What happens if we pick a different section u′?

• When dealing with two sections u and u′, we’ll denote ζ(k) ≡ u′(k)u(k)−1 and

ζ(k) = u(k)−1u′(k). It follows that ζ(k)−1 = u(k)u′(k)−1 and ζ(k)
−1

= u′(k)−1u(k).

Bear in mind that u(k)−1 and u′(k)−1 are of the form (something, k−1) — though they need not equal u(k−1) and

u′(k−1) — so ζ(k) and ζ(k) (and, obviously, their inverses) are in (H, e).

• Prop 9.14: Suppose we have a multiplication on G. If for some section u with
u(e) = (e, e) there exists a ν which (along with the η for that δ) satisfies constraints 1
and 2 above, then for every section u′ with u′(e) = (e, e), there exists a corresponding
ν′ which does so too (with the corresponding η′ for that u′, of course).

–

Pf: (Part 1: derivation of η′): Let η be for u and η′ be for u′. I.e. ηk(h) = u(k)(h, e)u(k)−1 and η′k(h) =

u′(k)(h, e)u′(k)−1. Let ν satisfy the two constraints when coupled with u and η. I.e. ηk(ν(k′, k′′)) ·
ν(k, k′k′′) = ν(k, k′)ν(kk′, k′′) and ηk ◦ η

k′ = ϕ
ν(k,k′) ◦ η

kk′ . Clearly, η′k(h) = ζ(k) · ηk(h) · ζ(k)−1.

–

Pf: (Part 2: derivation of ν′): ν′(k, k′) = u′(k)u′(k′)u′(kk′)−1. But u′(kk′) = ζ(kk′)u(kk′) =

ζ(kk′)ν(k, k′)−1u(k)u(k′), so ν′(k, k′) = ζ(k)u(k)ζ(k′)u(k′)u(k′)−1u(k)−1ν(k, k′)ζ(kk′)−1. This reduces

to ζ(k)u(k)ζ(k′)u(k)−1ν(k, k′)ζ(kk′)−1. But ζ(k′) ∈ (H, e), so we can write u(k)ζ(k′)u(k)−1 as ηk(ζ(k′)).
We thus get ν′(k, k′) = ζ(k)ηk(ζ(k′))ν(k, k′)ζ(kk′)−1.

– Cor: The explicit forms of are:

* η′k(h) = ζ(k) · ηk(h) · ζ(k)−1

* ν′(k, k′) = ζ(k) · ηk(ζ(k′)) · ν(k, k′) · ζ(kk′)−1

– Cor: We can invert these to get

* ηk(h) = ζ(k)−1 · η′k(h) · ζ(k)
* ν(k, k′) = ζ(k)−1 · η′k(ζ(k′))−1 · ν′(k, k′) · ζ(kk′)

Pf: The first is trivial. ν(k, k′) = ηk(ζ(k′))−1 · ζ(k)−1 · ν′(k, k′) · ζ(kk′) = ζ(k)−1 · η′k(ζ(k′))−1 · ζ(k) ·

ζ(k)−1 · ν′(k, k′) · ζ(kk′), which reduces to the result.

– Cor: Some useful forms:

* ηk
−1(h) = u(k)−1(h, e)u(k).

* ηk
−1(h) = ζ(k) · η′k

−1
(h)ζ(k)

−1
.

I.e. ηk
−1(h) = u(k)−1 · u′(k) · η′k

−1(h) · u′(k)−1 · u(k)

* η′k
−1

(h) = ζ(k)
−1

· ηk−1(h) · ζ(k).
I.e. η′k

−1(h) = u′(k)−1 · u(k) · ηk
−1(h) · u(k)−1 · u′(k)

Note that ηk
−1 and η′k

−1 denote inverse automorphisms, while ζ(k)−1 and ζ(k)−1 are multiplicative
inverses.

Pf: ηk
−1(ηk(h)) = u(k)−1u(k)(h, e)u(k)−1u(k) = (h, e). The other results then follow trivially.
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–

Pf: (Satisfaction of Constraint 1): We need to show that η′k(ν′(k′, k′′)) · ν′(k, k′k′′) = ν′(k, k′) · ν′(kk′, k′′).

The left side expands to ζ(k) · ηk[ζ(k′) · η
k′ (ζ(k

′′)) · ν(k′, k′′) · ζ(k′k′′)−1] · ζ(k)−1 · ζ(k) · ηk(ζ(k′k′′)) ·

ν(k, k′k′′) · ζ(kk′k′′)−1. The ζ(k)−1 · ζ(k) cancel and we then can combine the ηk expressions to get ζ(k) ·
ηk[ζ(k′) · η

k′ (ζ(k
′′)) · ν(k′, k′′) · ζ(k′k′′)−1 · ζ(k′k′′)] · ν(k, k′k′′) · ζ(kk′k′′)−1, but this then further reduces

to ζ(k) · ηk[ζ(k′) · η
k′ (ζ(k

′′)) · ν(k′, k′′)] · ν(k, k′k′′) · ζ(kk′k′′)−1, which can be rewritten as ζ(k) · ηk(ζ(k′)) ·

ηk(η
k′ (ζ(k

′′))) · ηk(ν(k′, k′′)) · ν(k, k′k′′) · ζ(kk′k′′)−1. Since η and ν obey the constraints, we can (constraint

1) replace ηk(η
k′ (ζ(k

′′))) with ϕ
nu(k,k′)(ηkk′ (ζ(k

′′))) = ν(k, k′)η
kk′ (ζ(k

′′)) · ν(k, k′)−1 and (constraint 2)

replace ηk(ν(k′, k′′)) ·ν(k, k′k′′) with ν(k, k′) ·ν(kk′, k′′). Plugging this all in, we get ζ(k) ·ηk(ζ(k′)) ·ν(k, k′) ·
η
kk′ (ζ(k

′′))ν(k, k′)−1 · ν(k, k′) · ν(kk′, k′′) · ζ(kk′k′′)−1, which immediately reduces to ζ(k) · ηk(ζ(k′)) ·

ν(k, k′) · η
kk′ (ζ(k

′′)) · ν(kk′, k′′) · ζ(kk′k′′)−1. Now, let’s consider the right side of our original tentative

equality. ν′(k, k′)·ν′(kk′, k′′) = ζ(k)·ηk(ζ(k′))·ν(k, k′)·ζ(kk′)−1·ζ(kk′)·η
kk′ ·(ζ(k

′′))ν(kk′, k′′)·ζ(kk′k′′)−1,

which immediately reduces to ζ(k) ·ηk(ζ(k′)) ·ν(k, k′) ·η
kk′ · (ζ(k

′′))ν(kk′, k′′) · ζ(kk′k′′)−1, which is the same

as our reduced expression for the left side.

–

Pf: (Satisfaction of Constraint 2): We need to show that η′k◦η
′
k′ = ϕ

ν′(k,k′)◦η
′
kk′ . First, consider the left side.

η′k(η′
k′ (h)) = ζ(k) · ηk[ζ(k′) · η

k′ (h) · ζ(k′)−1] · ζ(k)−1, which we may write as ζ(k) · ηk(ζ(k′)) · ηk(η
k′ (h)) ·

ηk(ζ(k′)−1) · ζ(k)−1. But η and nu obey the constraints, so (constraint 1) ηk(η
k′ (h)) = ϕ

ν(k,k′)(ηkk′ (h)) =

ν(k, k′) · η
kk′ (h) · ν(k, k′)−1, the latter by the definition of ϕ. Substituting this in, we get ζ(k) · ηk(ζ(k′)) ·

ν(k, k′) · η
kk′ (h) · ν(k, k′)−1 · ηk(ζ(k′)−1) · ζ(k)−1. Now consider the right side of our tentative equality.

ϕ
ν′(k,k′)(η

′
kk′ (h)) = ν′(k, k′) · η′

kk′ (h) · ν′(k, k′)−1 by the definition of ϕ. This expands to ζ(k) · ηk(ζ(k′)) ·

ν(k, k′) · ζ(kk′)−1 · ζ(kk′) · η
kk′ (h) · ζ(kk′)−1 · ζ(kk′) · ν(k, k′)−1 · ηk(ζ(k′))−1 · ζ(k)−1, which immediately

reduces to ζ(k) ·ηk(ζ(k′)) · ν(k, k′) ·η
kk′ (h) · ν(k, k′)−1 ·ηk(ζ(k′))−1 · ζ(k)−1. This is the same as our reduced

left side.

We proved what we called Constraints 1 and 2 above for any multiplication on G for which
(H, e)◁G and K ≈ G/(H, e). I.e. they are necessary conditions. Given such a multiplication
and any section u for which u(e) = (e, e), we have an η and ν which satisfy them. Let’s now
show that they are sufficient conditions as well.

• Prop 9.15: Given groups H and K and maps ν : K × K → H and η : K →
Aut(H) s.t. (a) η(e) = IdH , (b) ν(k, e) = e and ν(e, k) = e for all k ∈ K, (c)
ηk(ν(k

′, k′′)) · ν(k, k′k′′) = ν(k, k′)ν(kk′, k′′) for all k, k′, k′′ ∈ K, and (d) ηk(ηk′(h)) =
ν(k, k′) · ηkk′(h) · ν(k, k′)−1 for all k, k′ ∈ K and h ∈ H, there is a group extension
(i.e. a multiplication s.t. H is isomorphic to some N ◁G and K ≈ G/N). Specifically,
there is a a group G with elements labeled as (h, k) s.t.

– (e, e) is the identity.
– (h, k)(h′, k′) = (h · ηk(h′) · ν(k, k′), k · k′) is the multiplication.

The expression h·ηk(h′)·ν(k, k′) just involves multiplication on H, since h, ηk(h′), and ν(k, k′) all are elements
of H.

– (h, k)−1 = (ηk
−1(h−1 ·ν(k, k−1)−1), k−1) is the inverse (where ηk

−1 is the inverse
of the automorphism ηk).

This also can be written (ηk
−1(ν(k, k−1) · h)−1, k−1).

Also note that because η : K → Aut(H) is not a homomorphism, η
−1
k
̸= η

k−1 . Also, ηk
−1(h) ̸= ηk(h)−1 in

general (i.e. the inverse map is not the multiplicative inverse).

– i(h) = (h, e) is an isomorphism H → (H, e).
– (H, e) ◁ G.
– γ(h, k) = k is a surjective homomorphism G → K s.t. ker γ = (H, e).
– K ≈ G/(H, e).
– The section u(k) ≡ (e, k) has the provided fns η and ν as its η and ν from our
construction.
I.e., u(k)u(k′)u(kk′)−1 = ν(k, k′) and u(k)(h, e)u(k)−1 = ηk(h). Note that earlier we started with a multi-
plication and a u and derived η and ν. Here, we’re given η and ν and are constructing a multiplication for which
the given section has the specified η and ν as its fns.

Our multiplication is purely expressed in terms of an abstract η and ν without any reference to a cross-section.
How can this be? We have to be careful exactly what is being said here. The multiplication on G is the multipli-
cation on G, regardless of the means by which we initially specified it. This multiplication is expressed in terms
of these two functions, nothing more. It is perhaps clearer if we call them foo and bar rather than η and ν. We
then can ask whether there is a section u s.t. the associated η is foo and the associated ν is bar. I.e., is there a
section which happens to have the specified fns as its ν and η under the specified multiplication.

• This is a lot to unpack, but several of the consequences follow directly from others. For
example, the SES involving i and γ is equivalent to the normal/quotient relationship.
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• Ok, now for the proofs.

– First, let’s show that the multiplication is associative.
Pf: associativity): Consider (h, k)((h′, k′)(h′′, k′′)) = (h, k)(h′ ·η

k′ (h
′′)·ν(k′, k′′), k′k′′) = (h·ηk(h′ ·η

k′ (h
′′)·

ν(k′, k′′))·ν(k, k′k′′), kk′k′′). On the other hand, ((h, k)(h′, k′))(h′′, k′′) = (h·ηk(h′)·ν(k, k′), kk′)(h′′, k′′) =

(h·ηk(h′)·ν(k, k′)·η
kk′ (h

′′)·ν(kk′, k′′), kk′k′′). The 2nd components are equal, so we just need to consider the

first and show that h ·ηk(h′ ·η
k′ (h

′′) ·ν(k′, k′′)) ·ν(k, k′k′′) ?
= h ·ηk(h′) ·ν(k, k′) ·η

kk′ (h
′′) ·ν(kk′, k′′), which

can be rewritten h ·ηk(h′) ·ηk(η
k′ (h

′′)) ·ηk(ν(k′, k′′)) ·ν(k, k′k′′) ?
= h ·ηk(h′) ·ν(k, k′) ·η

kk′ (h
′′) ·ν(kk′, k′′).

Removing the identical first factors, we need to show that ηk(η
k′ (h

′′)) · ηk(ν(k′, k′′)) · ν(k, k′k′′) ?
= ν(k, k′) ·

η
kk′ (h

′′) · ν(kk′, k′′). Applying the 2nd constraint, the left side becomes ν(k, k′) · η
kk′ (h

′′) · ν(k, k′)−1 ·

ηk(ν(k′, k′′)) · ν(k, k′k′′). Applying the 1st constraint, it becomes ν(k, k′) · η
kk′ (h

′′) · ν(k, k′)−1 · ν(k, k′) ·
ν(kk′, k′′) which reduces to ν(k, k′) · η

kk′ (h
′′) · ν(kk′, k′′) and equals the right side.

– (e, e) must be the identity.
Pf: ((e, e) is the identity): We need to show that (h, k)(e, e) = (h, k) and (e, e)(h, k) = (h, k). (h, k)(e, e) =
(h · ηk(e) · ν(k, e), k · e) = (h, k) and (e, e)(h, k) = (e · ηe(k) · ν(e, k), e · k) = (h, k).

– The inverse can be derived from the multiplication rule.
Pf: (inverse): Consider the group axiom requirement that (h, k)(h, k)−1 = (e, e). Let (h′, k′) ≡ (h, k)−1.

Then (h · ηk(h′) · ν(k, k′), kk′) = (e, e). So, k′ = k−1 and h · ηk(h′) · ν(k, k′) = h · ηk(h′) · ν(k, k−1).

I.e., ηk(h′) = h−1ν(k, k−1)−1. ηk is an automorphism, so h′ = ηk
−1(h−1ν(k, k−1)−1), where ηk

−1 is the
inverse map and the other inverses are multiplicative inverses. Note that η (as a map K → Aut(N)) is *not* a

homomorphism, so we *can’t* write the inverse map ηk
−1 as η

k−1 . We thus must content ourselves with h′ =

ηk
−1(h−1ν(k, k−1)−1).

– Next, let’s prove the core of the theorem: that the multiplication in question
produces the desired normal/quotient relation involving H and K.

Pf: (i is an isomorphism): i trivially is bijective. Let’s show that i−1 is a homomorphism. A bijective homo-

morphism is an isomorphism, so it then would follow that i−1 (and hence i) is an isomorphism. By definition

i(e) = (e, e), which we showed is the identity on G. (h, e)(h′, e) = (h · ηe(h′)ν(e, e), e · e) = (hh′, e) (since

ν(e, e) = e). So i−1 is a homomorphism and we’re done.

Pf: (γ is a surjective homomorphism): γ trivially is surjective. γ(e, e) = e. Consider γ((h, k)(h′, k′)) =

γ(hηk(h′)ν(k, k′), kk′) = kk′. So γ is a homomorphism.

Pf: (ker γ = (H, e)): ker γ = γ−1(e), but γ(h, k) = k, so γ−1(e) = (H, e).

Pf: ((H, e) ◁ G): This follows because (H, e) = ker γ and γ is a surjective homomorphism. By the First Homo-
morphism Thm, (H, e) is normal in G.

Pf: (K ≈ G/(H, e)): Again, by the First Homomorphism Thm, since we have a surjective homomorphism γ,
K ≈ G/ker γ = G/(H, e).

– Finally, we’ll show that the specified u has the correct η and ν.
Pf: (Proof for η): (e, k) · (h, e) · (e, k)−1 = (eηk(h)ν(k, e), k) · (ηk

−1(eν(k, k−1)−1), k−1). The 2nd component

is e and the first reduces to ηk(h) · ηk(ηk
−1(ν(k, k−1)−1))ν(k, k−1). But ηk ◦ ηk

−1 = IdH , so we get ηk(h) ·
ν(k, k−1)−1 · ν(k, k−1) = ηk(h).

Pf: (proof for ν): (e, k)(e, k′) = (eηk(e)ν(k, k′), kk′) = (ν(k, k′), kk′). On the other hand,

(ν(k, k′), e)(e, kk′) = (ν(k, k′)ηe(e)ν(e, k), kk′) = (ν(k, k′), kk′). So u(k)u(k′) = ν(k, k′)u(kk′).

I.e., given our 2 fns, we can define a multiplication on G of the form specified. Under this multiplication, the sec-
tion u(k) ≡ (e, k) has the 2 fns as its η and ν. Given any other section u′, this same multiplication looks differ-

ent in terms of the corresponding η′ and ν′ for u′ — but is the same multiplication (we’ll exhibit it momentar-

ily). On the other hand, if we were given *that* η′ and ν′ then a different multiplication on G has those as the η
and ν for the (e, k) section.

• Suppose we pick some other section u′. It has its own associated η′ and ν′, given by
η′k(h) = u′(k)(h, e)u′(k)−1 and ν′(k, k′) = u′(k)u′(k′)u′(kk′)−1. We can do two things
with these.

– (i) Use these as the η and ν for a group construction of the form in the theorem.
We get a different group G′ because its multiplication now is built (using
the same formula of the thm) from η′ and ν′. Obviously, talking of u′ is
meaningless relative to G′. Though the labels still exist (since set-wise we’re
labeling points in H × K in both G and G′), the section u′ has no special
place in G′. The section with this µ′ and ν′ as its µ and ν in G′ is (e, k),
just as the multiplication formula is the usual one but now with η′ and ν′ in
place of the old η and ν. I.e., the only role of u′ in this approach is to obtain
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η′ and ν′, which we then use to build a new group. As we will see, any such
G′ is SES-equivalent to G.

– (ii) We can express the multiplication on G in terms of η′ and ν′. The multipli-
cation is unchanged, but its expression in terms of η′ and ν′ is different from
its expression in terms of η and ν. Let’s now see how they are related.
To use a basis change analogy from linear algebra, loosely speaking one of these corresponds to a change of
basis while the other corresponds to an active transformation.

• Prop 9.16: Given the setup of the theorem and a different section u′ with corre-
sponding η′ and ν′, the multiplication and inverse in terms of this η′ and ν′ are given
by:

– (h, k) · (h′, k′) = (h · ζ(k)−1 · η′k(h′ζ(k′)−1) · ν′(k, k′) · ζ(kk′), kk′).
– (h, k)−1 = (η′k

−1
((hζ(k)−1)−1ν′(k, k−1)−1) · ζ(k−1), k−1).

I.e., we don’t just replace η with η′ and ν with ν′, but effectively replace (h, k) with (hζ(k)−1, k). What about

the factors of ζ(kk′) and ζ(k−1) at the end of the two expressions? That too is a result of replacing (h, k) with

(hζ(k)−1, k). We convert our pts from (h, k) to (hζ(k)−1, k), etc. Then we apply the usual expressions, as if

η′ and ν′ were our fns. The result is of the form (h̃, k̃), but this is transformed. To get back to the true answer

(htrue, ktrue) we must reverse the mapping, so ktrue = k̃ and htrueζ(k̃)−1 = h̃. I.e. htrue = h̃ · ζ(k̃). In the

case of multiplication, k̃ = kk′ and in the case of the inverse k̃ = k−1. Put another way, the usual multiplication

and inverse expressions hold for η′ and ν′ but in the rotated space (hζ(k)−1, k). This also gives us some insight

into the type of alternate multiplication we get if we truly use η′ and ν′ as our input fns. In that case, we get

the same multiplication but operating on pts in the transformed G given by (h, k) → (hζ(k)−1, k). This is no

surprise, because we’re simply replacing u by u′ as our reference section so it makes sense the effect would be to

rotate the H part of H ×K in the opposite direction by u(k)u′(k)−1.

Pf: (multiplication): For multiplication, the 2nd term still is kk′. The first term is hηk(h′)ν(k, k′) =

hζ(k)−1η′k(h′)ζ(k)ζ(k)−1η′k(ζ(k′))−1ν′(k, k′)ζ(kk′) = hζ(k)−1η′k(h′)η′k(ζ(k′))−1ν′(k, k′)ζ(kk′). Since

ηk is a homomorphism, this is just hζ(k)−1η′k(h′ · ζ(k′)−1)ν′(k, k′)ζ(kk′), the form stated.

Pf: (inverse): For the inverse, the 2nd term still is k−1. The 1st term is ηk
−1(h−1ν(k, k−1)−1). Fully ex-

panded in terms of u, this is u(k)−1h−1u(k · k−1)−1u(k−1)−1u(k)−1u(k). Noting that u(e) = e and reducing

the expression we have u(k)h−1u(k−1)−1. Since u is not a homomorphism, further reduction is not possible.

Now consider the expression η′k
−1((hζ(k)−1)−1ν′(k, k−1)−1) · ζ(k−1). Expanding in terms of u′ and u, we

have u′(k)−1u′(k)u(k)−1h−1u′(k · k−1)−1u′(k−1)−1u′(k)−1u′(k)u′(k−1)u(k−1)−1. This immediately re-

duces to u(k)−1h−1u(k−1)−1, which is the same.

• Prop 9.17: Let G be constructed via our programme from groups H and K and a
suitable η and ν, and let G′ be constructed via our programme from groups H and K
and a suitable η′ and ν′, and let η′ and ν′ are relate to η and ν by the section-change
rule above (i.e., η′ and ν′ are the relevant η and ν for some other section of G, which
need not be the case in general). Then not only does G ≈ G′, but the group extensions
are SES-equivalent.
I.e., for a given H and K, the group extensions are partitioned into equivalence classes by the section-change relation-
ship. Note that these need not equal the SES-equivalence classes per-se because the there also may be SEs-equivalences
which are not related in this way. I.e., the partition thus engendered can be a refinement of SES-equivalence. Put an-
other way, multiple of our equivalence classes may form each SES-equivalence class.

Pf: Suppose we are given such a G (built from η and ν) and G′ (built from η′ and ν′), and that u is the usual section of G (i.e.

(e, k)) and u′ is the section of G with η′ and ν′ as its fns. As usual, we’ll denote ζ(k) ≡ u′(k)u(k)−1 (in G). Define the map

γ : G → G′ via γ(h, k) ≡ (hζ(k)−1, k). Clearly, γ is bijective and slice-preserving since all it does it translate the elements

of slice k by ζ(k)−1. Since u(e) = u′(e) = e, ζ(e) = e and γ(e, e) = (e, e). As for multiplication, γ(h, k) = (hζ(k)−1, k) and

γ(h′, k′) = (h′ζ(k)−1, k), so γ(h, k)γ(h′, k′) = (h·ζ(k)−1·η′k(h′ζ(k)−1)·ν′(k, k′), kk′). On the other hand, γ((h, k)(h′, k′)) =

γ(h · ηk(h′) · ν(k, k′), kk′) = (h · ηk(h′) · ν(k, k′) · ζ(kk′)−1, kk′). The second components match up, but what about the first?

Since η and ν are related to η′ and ν′ via a section-change, we have the relationship above and h · ηk(h′) · ν(k, k′) = h · ζ(k)−1 ·
η′k(h′ζ(k′)−1)·ν′(k, k′)·ζ(kk′). This can be rephrased as h·ηk(h′)ν(k, k′)ζ(kk′)−1 = h·ζ(k)−1 ·η′k(h′ζ(k′)−1)·ν′(k, k′), and

the first components are equal. γ is a bijective homomorphism and thus an isomorphism, so G ≈ G′. To see SES-equivalence, we
first note that γ restricts to an isomorphism between (H, e) ⊂ G and (H, e) ⊂ G′. In fact, it induces the identity automorphism
on H. The restriction is γ(h, e) = (h, e) since γ(e) = e. Since the group multiplication is the same (via isomorphism) and the

normal subgroup is the same, so is the quotient group. K labels it the same way, since G and G′ only differ in their behavior

within slices. Formally, the SES for G is e → H
i−→ G

q
−→ K → e and for G′ it is e → H

i−→ G′
q
−→ K → e, with the same i and

q. How can this be? γ effectively is an automorphism of G. It has no effect on (H, e) ⊂ G and has no effect on G/(H, e). All it
does is relabel elements (slightly) within each k ̸= e slice. We thus have an SES-equivalence.
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